UNIVERSITY OF CALICUT

Abstract

General and Academic - Faculty of Science - Syllabus of BSc Zoology Programme under CBCSS UG Regulations 2019 with effect from 2019 Admission onwards - Implemented- Orders Issued

G & A - IV - J

Read:-
1) U.O No. 4368/2019/Admn dated 23.03.2019
2) Item No.1 in the minutes of the meeting of the Board of Studies in Zoology UG held on 25.06.2019
3) Item No. I.12 in the minutes of the meeting of Faculty of Science held on 27.06.2019

ORDER

The Regulations for Choice Based Credit and Semester System for Under Graduate (UG) Curriculum-2019 (CBCSS UG Regulations 2019) for all UG Programmes under CBCSS-Regular and SDE/Private Registration w.e.f. 2019 admission has been implemented vide paper read first above.

The meeting of Board of Studies in Zoology UG held on 25.06.2019 has approved the Scheme and Syllabus of BSc Zoology Programme in tune with the new CBCSS UG Regulations with effect from 2019 Admission onwards, vide paper read second above.

The Faculty of Science at its meeting held on 27.06.2019 has approved the minutes of the meeting of the Board of Studies Zoology UG held on 25.06.2019, vide paper read third above.

Under these circumstances, considering the urgency, the Vice Chancellor has accorded sanction to implement the Scheme and Syllabus of BSc Zoology Programme in accordance with the new CBCSS UG Regulations 2019, in the University with effect from 2019 Admission onwards, subject to ratification by the Academic Council.

The Scheme and Syllabus of BSc Zoology Programme in accordance with CBCSS UG Regulations 2019 is therefore implemented in the University with effect from 2019 Admission onwards.

Orders are issued accordingly. (Syllabus appended).

Biju George K
Assistant Registrar

To

The Principals of all Affiliated Colleges
Copy to: PS to VC/PA to PVC/ PA to Registrar/PA to CE/JCE I/JCE IV/DoA/EX and EG Sections/GA I F/CHMK Library/Information Centres/SF/DF/FC

Forwarded / By Order

Section Officer
UNIVERSITY OF CALICUT

B.Sc. ZOOLOGY PROGRAMME
[CBCSS UG 2019]

SYLLABUS

Core Courses
Open Courses
Complementary Courses
&
Model Question Papers

EFFECTIVE FROM 2019 ADMISSION
Members of Board of Studies in Zoology (UG)
(U.O.No.10961/2016/Admn. dated, Calicut University, P.O., 07.09.2016)

1. **Dr. T.M. Benny (Chairman)**
 Associate Professor, Dept. of Zoology
 St. Joseph’s College, Devagiri, Kozhikode
 email: bennydevagiri@gmail.com
 Mob: 9495184280

2. **Dr. P. Haridasan**
 Principal, Govt. Arts and Science College,
 Thrithala, Palakkad.
 email: dr.p.haridasan@gmail.com
 Mob: 9496294026

3. **Dr. Francy K. Kakkassery**
 Associate Professor, Dept. of Zoology,
 St. Thomas College, Thrissur.

4. **Dr. I. P. Abdul Razak**
 Associate Professor, Dept. of Zoology,
 Unity College, Manjeri.

5. **Dr.Tomy Francis**
 Associate Professor, Dept. of Zoology,
 St. Aloysius College, Elthuruth, Thrissur.

6. **Dr. Jeeja Tharakan**
 Associate Professor, Dept. of Zoology,
 St. Aloysius College, Elthuruth, Thrissur.

7. **Dr. P. Shylaja Kumari**
 Assistant Professor, Dept. of Zoology,
 Govt. Arts and Science College,
 Meenchanda, Kozhikode.

8. **Mr. Abdul Riyas, K.**
 Assistant Professor, Dept. of Zoology,
 Govt. Arts and Science College,
 Meenchanda, Kozhikode.

9. **Dr. Santhosh Shreevihar**
 Assistant Professor, Dept. of Zoology,
 Malabar Christian College, Calicut.

10. **Dr. Anoop Das**
 Assistant Professor, Dept. of Zoology,
 M.E.S.Mampad College, Mampad.

11. **Dr. M. Nasser [Chairman, Board of Studies Zoology (PG)]**
 Professor, Dept. of Zoology,
 University of Calicut.
INDEX

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Content</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B.Sc. Zoology programme: Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Aims and objectives</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>An Overview</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Credits and marks distribution of B.Sc. Zoology programme (Course Structure) [Table 2]</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>Course wise mark distribution of B.Sc. Zoology programme [Table 3]</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>Semester wise distribution of credits and marks [Table 4]</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>B.Sc. Zoology (Core) programme Structure of core, open and elective courses [Table 5]</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>B.Sc. Zoology Open course [for students of other streams] Structure of open course [Table 6]</td>
<td>13</td>
</tr>
<tr>
<td>9</td>
<td>Outcomes and Outcome Based Education (OBE)</td>
<td>14</td>
</tr>
<tr>
<td>10</td>
<td>Programme Outcomes (POs) for general undergraduate programme</td>
<td>15</td>
</tr>
<tr>
<td>11</td>
<td>Program Specific Outcomes (PSOs): B.Sc. Zoology program, course outcomes</td>
<td>15</td>
</tr>
<tr>
<td>12</td>
<td>Core course: Scheme of instructions</td>
<td>16</td>
</tr>
<tr>
<td>13</td>
<td>Examinations</td>
<td>17</td>
</tr>
<tr>
<td>14</td>
<td>Evaluation and Grading</td>
<td>18</td>
</tr>
<tr>
<td>15</td>
<td>Ten point indirect grading system [Table 7]</td>
<td>19</td>
</tr>
<tr>
<td>16</td>
<td>Core course: Scheme of evaluation</td>
<td>19</td>
</tr>
<tr>
<td>17</td>
<td>A. Theory [core course]: Evaluation scheme</td>
<td>19</td>
</tr>
<tr>
<td>18</td>
<td>I. Internal evaluation</td>
<td>19</td>
</tr>
<tr>
<td>19</td>
<td>II. External evaluation</td>
<td>21</td>
</tr>
<tr>
<td>20</td>
<td>Pattern of question paper (theory) type 1 & 2 [Table 9 & 10]</td>
<td>22</td>
</tr>
<tr>
<td>21</td>
<td>B. Practical [core course]: Evaluation scheme</td>
<td>22</td>
</tr>
<tr>
<td>22</td>
<td>I. Internal evaluation</td>
<td>22</td>
</tr>
<tr>
<td>23</td>
<td>II. External evaluation</td>
<td>23</td>
</tr>
<tr>
<td>24</td>
<td>Scheme of question papers for practical I, II & III [Table 12 & 13]</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>Project work & Field study (core course): Evaluation scheme</td>
<td>25</td>
</tr>
<tr>
<td>26</td>
<td>I. Internal evaluation</td>
<td>26</td>
</tr>
<tr>
<td>27</td>
<td>II. External evaluation</td>
<td>26</td>
</tr>
<tr>
<td>28</td>
<td>Open Course [Zoology]</td>
<td>27</td>
</tr>
<tr>
<td>29</td>
<td>Open Course : Scheme of Evaluation</td>
<td>27</td>
</tr>
<tr>
<td>30</td>
<td>I. Internal evaluation</td>
<td>27</td>
</tr>
<tr>
<td>31</td>
<td>II. External evaluation: Pattern of question paper [Table 20]</td>
<td>28</td>
</tr>
<tr>
<td>32</td>
<td>Internal Assessment : Precautions</td>
<td>28</td>
</tr>
<tr>
<td>Sl. No.</td>
<td>Content</td>
<td>Page No.</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>33</td>
<td>S1. Core course I [Theory]: Animal diversity: Non-chordata Part-I</td>
<td>31</td>
</tr>
<tr>
<td>34</td>
<td>S2. Core course II [Theory]: Animal diversity: Non-chordata Part-II</td>
<td>35</td>
</tr>
<tr>
<td>35</td>
<td>S3. Core course III [Theory]: Animal diversity: Chordata Part-I</td>
<td>39</td>
</tr>
<tr>
<td>36</td>
<td>S4. Core course IV [Theory]: Animal diversity: Chordata Part-II</td>
<td>43</td>
</tr>
<tr>
<td>37</td>
<td>S4. Core course Practical - I : [S1 IA + S2 IB + S3 IC + S4 ID]</td>
<td>47</td>
</tr>
<tr>
<td>38</td>
<td>S5. Core course V [Theory]: Cell Biology and Genetics</td>
<td>53</td>
</tr>
<tr>
<td>39</td>
<td>S5. Core course VI [Theory]: Biotechnology, Microbiology and Immunology</td>
<td>58</td>
</tr>
<tr>
<td>40</td>
<td>S5. Core course VII [Theory]: Biochemistry and Molecular Biology</td>
<td>63</td>
</tr>
<tr>
<td>41</td>
<td>S5. Core course VIII [Theory]: Methodology in Science, Biostatistics and Bioinformatics</td>
<td>68</td>
</tr>
<tr>
<td>42</td>
<td>S5. Core course Practical - II : [S5 IIA + S5 IIB]</td>
<td>72</td>
</tr>
<tr>
<td>43</td>
<td>S5. Open course: Zoology - 01 [Theory]: Reproductive Health and Sex Education</td>
<td>77</td>
</tr>
<tr>
<td>44</td>
<td>S5. Open course: Zoology - 02 [Theory]: Nutrition, Health and Hygiene</td>
<td>80</td>
</tr>
<tr>
<td>45</td>
<td>S5. Open course: Zoology - 03 [Theory]: Applied Zoology</td>
<td>83</td>
</tr>
<tr>
<td>46</td>
<td>S6. Core course IX [Theory]: Physiology and Endocrinology</td>
<td>86</td>
</tr>
<tr>
<td>47</td>
<td>S6. Core course X [Theory]: Reproductive and Developmental Biology</td>
<td>89</td>
</tr>
<tr>
<td>48</td>
<td>S6. Core course XI [Theory]: Environmental and Conservation Biology</td>
<td>93</td>
</tr>
<tr>
<td>49</td>
<td>S6. Core course XII [Theory]: Ethology, Evolution and Zoogeography</td>
<td>97</td>
</tr>
<tr>
<td>50</td>
<td>S6. Core Elective course XIII [Theory]: 01: Human Genetics</td>
<td>101</td>
</tr>
<tr>
<td>52</td>
<td>S6. Core Elective course XIII [Theory]: 03: Applied Entomology</td>
<td>107</td>
</tr>
<tr>
<td>53</td>
<td>S6. Core course Practical - III : [S6 IIIA + S6 IIIB]</td>
<td>111</td>
</tr>
<tr>
<td>54</td>
<td>B.Sc. Zoology Complementary Programme</td>
<td>117</td>
</tr>
<tr>
<td>55</td>
<td>Complementary Course: Introduction</td>
<td>117</td>
</tr>
<tr>
<td>56</td>
<td>Complementary Course: Scheme of instruction</td>
<td>117</td>
</tr>
<tr>
<td>57</td>
<td>Complementary Course: Structure of complementary course</td>
<td>118</td>
</tr>
<tr>
<td>58</td>
<td>Complementary Course: Scheme of evaluation</td>
<td>119</td>
</tr>
<tr>
<td>59</td>
<td>A. Theory [Complementary course]: Evaluation scheme</td>
<td>119</td>
</tr>
<tr>
<td>60</td>
<td>i. Internal evaluation</td>
<td>119</td>
</tr>
<tr>
<td>61</td>
<td>ii. External evaluation</td>
<td>120</td>
</tr>
<tr>
<td>Sl. No.</td>
<td>Content</td>
<td>Page No.</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>62</td>
<td>B. Practical [Complementary course]: Evaluation scheme</td>
<td>121</td>
</tr>
<tr>
<td>63</td>
<td>i. Internal Evaluation</td>
<td>121</td>
</tr>
<tr>
<td>64</td>
<td>ii. External Evaluation</td>
<td>122</td>
</tr>
<tr>
<td>65</td>
<td>Scheme of question paper for Complementary Practical</td>
<td>122</td>
</tr>
<tr>
<td>66</td>
<td>S1. Compl. course I [Theory]: Animal Diversity and Wildlife Conservation</td>
<td>123</td>
</tr>
<tr>
<td>67</td>
<td>S2. Compl. course II [Theory]: Economic Zoology</td>
<td>126</td>
</tr>
<tr>
<td>68</td>
<td>S3. Compl. course III [Theory]: Physiology and Ethology</td>
<td>128</td>
</tr>
<tr>
<td>69</td>
<td>S4. Compl. course IV [Theory]: Genetics and Immunology</td>
<td>131</td>
</tr>
<tr>
<td>70</td>
<td>S4. Complementary course Practical-I:[S1 IA+S2 IB+S3 IC+S4 ID]</td>
<td>134</td>
</tr>
<tr>
<td>71</td>
<td>Model question papers [Core courses] (S1-S5)</td>
<td>139</td>
</tr>
<tr>
<td>72</td>
<td>Model question papers [Open courses]</td>
<td>147</td>
</tr>
<tr>
<td>73</td>
<td>Model question papers [Core courses] (S6)</td>
<td>150</td>
</tr>
<tr>
<td>74</td>
<td>Model question papers [Core Elective courses]</td>
<td>154</td>
</tr>
<tr>
<td>75</td>
<td>Model question papers [Complementary courses]</td>
<td>157</td>
</tr>
<tr>
<td>76</td>
<td>Model question paper [Core Practical I]</td>
<td>161</td>
</tr>
<tr>
<td>77</td>
<td>Model question paper [Core Practical II & III]</td>
<td>162</td>
</tr>
<tr>
<td>78</td>
<td>Model question paper [Complementary Practical]</td>
<td>166</td>
</tr>
</tbody>
</table>
INTRODUCTION,
GUIDELINES
AND
GENERAL INFORMATION
INTRODUCTION

The Higher Education Programme in Kerala has been witnessing a drastic change from 2009 admission onwards with the introduction of Semesterisation and Grading at the undergraduate level. As a continuation of this trend, UGC has recognized the importance of Outcome Based Education (OBE) to be incorporated in the Choice Based Credit and Semester System (CBCSS) for UG curriculum. A course in General Higher Education Programme in India needs to be designed and conducted to facilitate the students to meet the identified Course Outcomes (COs). The course outcomes address a subset of Programme Outcomes (POs) identified by the university or the autonomous institutions that offer the programme. Also, the course outcomes address the Programme Specific Outcomes (PSOs) identified by the Branch/Department. Keeping in view of the implementation of OBE-CBCSS of UGC, Kerala State Higher Education Council conducted three days workshop during 12-14 February 2019 with the title “Redesigning of Courses for Outcome Based Education (OBE)” for the Board of Studies in UG Programme under Faculty of Science at Tagore Nikethan, University of Calicut.

Vide U.O No. GA I/J2/3601/08 (Vol. II) dated 19.06.2009, regulations for CBCSS for UG curriculum was implemented from 2009 admission onwards under the University of Calicut, as per the directions of Kerala State Higher Education Council. The regulations of CBCSS for UG curriculum was also modified [U.O. No. 3797/2013/CU dated 07.09.2013] and implemented from 2014 admission onwards under the University of Calicut, as per the recommendations of Hridayakumari Committee appointed by the Govt. of Kerala. The Academic Council in its special meeting held on 28.02.2019 has approved the CBCSS UG regulations 2019 [U.O No. 4368/2019/Admn dated, 23.03.2019] and has, therefore, been accorded to implement the regulations for Choice Based Credit and Semester System for Under Graduate curriculum-2019 (CBCSS UG Regulations 2019) for all UG Programme under CBCSS regular and SDE/Private registration in the university of calicut, w.e.f. 2019 admission.

Board of Studies in Zoology (U.G.) of University of Calicut [constituted as per U.O.No.10961/2016/Admn. Dated 07.09.2016] reviewed and meticulously analyzed the existing and continuing syllabi of B.Sc. Zoology Programme. BoS received many requests and suggestions regarding the course structure, content and credit distribution that are to be incorporated in to the existing syllabus. BoS also discussed the details of the syllabus of B.Sc. Zoology programme in the context of outcome based education and the regulations of CBCSS UG curriculum 2019. Accordingly, BoS has framed the curriculum, course structure, course content, instructional hours, scheme of instruction, scheme of evaluation, credits, mark distribution, duration of examination and model question papers of B.Sc. Zoology Programme [CBCSS UG] with the present requirements of the teaching and learning process.

In addition, the semester-end examinations (total 6 semesters) to be conducted by the university, a system of continuous evaluation through Internal
Assessment by the faculty members of the Department of Zoology of the respective institutions must be adopted for Zoology Core, Open and Complementary courses. The distribution of marks is 80% for external evaluation and 20% for internal assessment.

The syllabus for the six semesters of B.Sc. Degree Programme with Zoology as Core course of study which contain provision for both theory and practical components in all six semesters and complementary courses also contain both theory and practical components in four semesters.

Some changes are also made in the combination of core course content in the fifth and sixth semesters in order to complete the teaching process in time especially in the tight schedule of the semesters. Further, some pertinent topics are suggested for seminar/ assignment for theory courses with a view to enrich the UG Programme.

The practical courses offered are designed in such a way that they support the theory topics and also impart the basic skills and techniques required of them. In addition to the items for practical, a Project work forms an integral part of the curriculum during the sixth semester. Field study/study tour to the research institution/museum and places of biological/zoolcical importance/ecological interest is a compulsory element of the curriculum. Requirement to visit places of importance of elective subject area is also a compulsory element. Attempts have also been made to update the syllabus, considering the needs of the time and conforming to the work load prescribed by the university.

Accordingly, the BoS meeting held on 12.04.2019 at Calicut University took the decision to implement the revised syllabus w.e.f. 2019 B.Sc. Zoology admission.

AIMS AND OBJECTIVES

The Board of Studies in Zoology (UG) recognizes that curriculum, course content and assessment of scholastic achievement play complementary roles in shaping education. The revised Outcome Based Education- Choice Based Credit and Semester System for Under Graduate (UG) Curriculum for B.Sc. Zoology Programme envisages undergraduate education as a combination of general and specialized education with outcome based, simultaneously introducing the concepts of breadth and depth in learning. Besides recalling information, the learning process is aimed to acquire the ability for problem solving, and critical and creative thinking in students. The present attempt is to prepare the students for lifelong learning by drawing attention to the vast world of knowledge of animals and introducing them to the methodology of systematic academic enquiry. The crew of the syllabus ensures firm footing in fundamental aspects of Zoology and wide exposure to modern branches of Zoology to the students.

The expected outcome of the syllabus:

- To know the scope and importance of Zoology.
- To develop scientific temper among students.
• To inculcate interest in nature and living forms and their conservation.
• To make the students eco-friendly by creating a sense of environmental awareness in them.
• To give better exposure to the diversity of life forms.
• To give awareness about natural resources and their importance in sustainable development.
• To study different ecological sites for animals in their natural habitats by field study.
• To provide opportunities for the application of the acquired knowledge in day- to - day life.
• To develop skills in doing experiments, familiarizing equipments and biological specimens.
• To undertake scientific projects which help to develop research aptitude in students.
• To expose students to various fields in biological sciences and to develop interest in related disciplines.
• To attain interdisciplinary approach to understand the application of the subject in daily life.
• To familiarize the emerging areas of Zoology and their applications in various spheres of biological sciences and to appraise the students of its relevance in future studies.

AN OVERVIEW

Definitions and Structure

Title shall be called “Regulations for Choice Based Credit and Semester System for Under Graduate Curriculum 2019” (CBCSS UG 2019). Programme means the entire course of study and examinations lead to the award of a degree. Duration of programme means period of time required for the conduct of undergraduate programme i.e. six semesters distributed in a period of 3 years. The odd semesters (1, 3 and 5) shall be from June to October and the even semesters (2, 4 and 6) shall be from November to March. Academic week is a unit of five working days in which distribution of work is organised from Monday to Friday with five contact hours of one hour duration on each day. A sequence of 18 such academic weeks constitutes a semester. Semester constitute minimum of 18 weeks (16 instructional weeks and 2 weeks for examination).

Course means a segment of subject matter to be covered in a semester. The graduate programme includes five types of courses, viz., common, core, complementary, open, audit /ability enhancement and improvement courses. Common course means a course that comes under the category of courses for English and additional language, a selection of both is compulsory for all students undergoing undergraduate programme. Every undergraduate student shall undergo 10 common courses [6 English courses and 4 additional language courses] for completing the programme. Core courses are major (core) courses in a subject related to a particular degree programme. Core courses are offered by the parent department. There are 17 core courses including a project work and field study.
Complementary course means a course which is generally related to the core subject. It covers two disciplines in B.Sc. degree programme that are distributed in the first four semesters. There shall be one Open course in the 5th semester. This is a course outside the field of specialisation of the student, which can be opted by his/her choice. Audit course/Ability Enhancement course is a course which is mandatory. There shall be one Audit course each in the first four semesters. These courses are not meant for class room study. The credits of audited courses are not counted for SGPA or CGPA. [Improvement course is a course registered by a student for improving his/her performance.]

Course code of each course shall have a unique alphanumeric code number, which includes abbreviation of the subject in three letters, the semester number (1 to 6) in which the course is offered, the code of the course (A to E) and serial number of the course (01,02.). (A: Common course, B: Core course, B (E): Core Elective course, C: Complementary course and D: Open course, E: Audit course)

For example: ZOL5B06 represents a core course of serial number 06 offered in 5th semester in B.Sc. Zoology programme.

Each course shall have certain credits. Credit is a unit of academic input measured in terms of weekly contact hours/course content assigned to a course. Extra Credit is the mandatory additional credit awarded to a student over and above the minimum credits required in a programme, for participating in co-curricular activities and social activities outside the regular class hours, like NCC, NSS and Swatch Bharath. Those students who could not join in any of the above activities have to undergo Calicut University Social Service Programme (CUSSP). Extra credits are not counted for SGPA or CGPA.

Grade in a course is a letter symbol (O, A+, A, B+, B, C, P, F, I and Ab). Grade shall mean the prescribed alphabetical grade awarded to a student based on his/her performance in various examinations. Each letter grade is assigned a ‘Grade point (G) which is an integer indicating the numerical equivalent of the broad level of performance of a student in a course. Grade Point means point given to a letter grade on 10 point scale. Strike off the roll: A student who is continuously absent for 14 days without sufficient reason and proper intimation to the Principal of the college shall be removed from the roll.

Department means any teaching department in a college offering a course of study approved by the university as per the Statutes and Act of the University. Department Co-ordinator is a teacher nominated by a Dept. Council to co-ordinate all the works related to CBCSS UG undertaken in that department including continuous evaluation. Department Council means the body of all teachers of a department in a college. Parent Department means the Department which offers a particular degree programme. Course teacher: A teacher nominated by the Head of the Department shall be in charge of a particular course.

College Co-ordinator is a teacher nominated by the college council to co-ordinate the effective running of the process of CBCSS including internal evaluation undertaken by various departments within the college. She/he shall be the convener for the college level monitoring committee. College level monitoring committee: A monitoring Committee is to be constituted for CBCSS UG at the
college level with Principal as Chairperson, college co-ordinator as convener and department co-ordinators as members. The elected college union chairperson shall be a member of this committee. Faculty Adviser means a teacher from the parent department nominated by the Department Council, who will advise the student in the academic matters and in the choice of open courses.

Project work & Field study: Every student of a UG programme shall have to work on a project under the supervision of a faculty member. A field study/study tour for 5 days is compulsory during the tenure of the B.Sc. Zoology programme.

Grace Marks: Grace marks may be awarded to a student for meritorious achievements in co-curricular activities (in Sports/Arts/NSS/NCC/Student Entrepreneurship) carried out besides the regular hours. Such a benefit is applicable and limited to a maximum of 8 courses in an academic year spreading over two semesters. In addition, maximum of 6 marks per semester can be awarded to the students of UG Programme, for participating in the College Fitness Education Programme (COFE).

Attendance: A student shall be permitted to appear for the semester examination, only if he/she secures not less than 75% attendance in each semester. Attendance shall be maintained by the Department concerned.

A student is required to acquire a minimum of 140 credits for passing the degree programme, of which 120 credits are to be acquired from class room study and shall only be counted for SGPA and CGPA.

Common courses: 38 credits (22 for English courses + 16 for Additional languages).

Core courses: 55 credits (including 2 credits for project work & 1 for field study).

Open course: 3 credits

Complementary courses: 24 credits (12 credits each for Chemistry and Botany)

Audit courses: 16 credits (4 credits per course in first 4 semesters)

Extra credits: 4 credits (4 credits in first 4 semesters)

If more Extra credit activities are done by a student that may be mentioned in the Grade card. The credits of audited courses or extra credits are not counted for SGPA or CGPA. The successful completion of all the courses (common, core, complementary and open courses) prescribed for the degree programme with ‘P’ grade shall be the minimum requirement for the award of degree.

CALICUT UNIVERSITY SOCIAL SERVICE PROGRAMME (CUSSP)

In this programme, a student has to complete 12 days of social service. This has to be completed in the first four semesters; 3 days in each semester. For the regular programme the student has to work in a Panchayath or Local body or in a hospital/ poor home or old age home or in a Pain & palliative centre or any social work assigned by the College authorities. Students who engaged in College Union
activities and participate in sports and cultural activities in Zonal level have to undergo only 6 days of CUSSP during the entire programme. The whole documents regarding the student should be kept in the college and the Principal should give a certificate for the same. The list of students (successfully completed the programme) must be sent to the university before the commencement of the fifth semester examinations. A college level co-ordinator and a department level co-ordinator shall be appointed for the smooth conduct of the programme.

AUDIT COURSES/ABILITY ENHANCEMENT COURSES

These are courses which are mandatory for a programme but not counted for the calculation of SGPA or CGPA. There shall be one Audit course each in the first four semesters. These courses are not meant for class room study. The students can attain only pass (Grade P) for these courses. At the end of each semester, there shall be examination conducted by the college from a pool of questions (Question Bank) set by the University. The Question paper shall be of 100 marks of 3 hour duration. The students can also attain these credits through online courses like SWAYAM, MOOC etc (optional). The list of passed students must be sent to the University from the colleges at least before the fifth semester examination. The lists of courses in each semester with credits are given below.

<table>
<thead>
<tr>
<th>Sl.No.</th>
<th>Semesters</th>
<th>Courses</th>
<th>Credits</th>
<th>Marks</th>
<th>Duration of Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I</td>
<td>Environmental studies</td>
<td>4</td>
<td>100</td>
<td>3 hrs</td>
</tr>
<tr>
<td>2</td>
<td>II</td>
<td>Disaster Management</td>
<td>4</td>
<td>100</td>
<td>3 hrs</td>
</tr>
<tr>
<td>3</td>
<td>III</td>
<td>*Human Rights/Intellectual Property Rights/ Consumer Protection</td>
<td>4</td>
<td>100</td>
<td>3 hrs</td>
</tr>
<tr>
<td>4</td>
<td>IV</td>
<td>*Gender studies/Gerontology</td>
<td>4</td>
<td>100</td>
<td>3 hrs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>16</td>
<td>400</td>
<td></td>
</tr>
</tbody>
</table>

*College can opt any one of the courses.
<table>
<thead>
<tr>
<th>Semesters</th>
<th>Common course: Credits</th>
<th>Addl Language</th>
<th>Core Course: Zoology: Credits</th>
<th>Open Course: Credits</th>
<th>Complementary course: Credits</th>
<th>Total Credits</th>
<th>Audit course: Credits</th>
<th>Extra Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>3+3</td>
<td>4</td>
<td>2</td>
<td>--</td>
<td>2</td>
<td>16</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>4+4</td>
<td>4</td>
<td>2</td>
<td>--</td>
<td>2</td>
<td>18</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>--</td>
<td>2</td>
<td>15</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>IV</td>
<td>4</td>
<td>4</td>
<td>3+4*</td>
<td>--</td>
<td>2+4*</td>
<td>27</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>--</td>
<td>--</td>
<td>4+4+4+4+4</td>
<td>3</td>
<td>--</td>
<td>19</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>--</td>
<td>--</td>
<td>3+3+3+3+3+2+4*+4*+2**+1**</td>
<td>--</td>
<td>--</td>
<td>25</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>22</td>
<td>16</td>
<td>55</td>
<td>3</td>
<td>12</td>
<td>120</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Credits (550 Marks)</td>
<td>Credit (400 Marks)</td>
<td>Credits (1450 Marks)</td>
<td>Credits (75 Marks)</td>
<td>Credits (400 Marks)</td>
<td>Credits (3275 Marks)</td>
<td>Credits (400 Marks)</td>
<td>Credits (100 Marks)</td>
</tr>
<tr>
<td></td>
<td>38 Credits (950 Marks)</td>
<td>82 Credits (2325 Marks)</td>
<td>120 Credits (3275 Marks)</td>
<td>#16 Credits (400 Marks)</td>
<td>#4 Credits (100 Marks)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Grand Total: 3775 Marks; 140 Credits (Minimum)

*Practical (12 Credits) **Project work – 2 credits; **Field study – 1 credit.

Credits acquired from class room study and counted for SGPA and CGPA: 120
Total 140 credits [120+16+4] are required for completing UG programme.
#Credits of audit course (16) and extra credits (4) are mandatory and not counted for SGPA or CGPA calculation.
Table 3. COURSE-WISE MARK DISTRIBUTION OF B.Sc. ZOOLOGY PROGRAMME

<table>
<thead>
<tr>
<th>Courses</th>
<th>No. of Courses</th>
<th>Marks per Course</th>
<th>Total Marks</th>
<th>Grand Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>English Theory</td>
<td>6</td>
<td>75 x 2 = 150</td>
<td>550</td>
<td>550</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 x 4 = 400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional Language Theory</td>
<td>4</td>
<td>100</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>Core Courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zoology Theory</td>
<td>13</td>
<td>75 x 9 = 675</td>
<td>1075</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 x 4 = 400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practical</td>
<td>3</td>
<td>100</td>
<td>300</td>
<td>1450</td>
</tr>
<tr>
<td>Project work and Field study</td>
<td>1</td>
<td>60 + 15 = 75</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Open course</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zoology/Other streams Theory</td>
<td>1</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Complementary courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry Theory</td>
<td>4</td>
<td>75 x 4 = 300</td>
<td>300</td>
<td>400</td>
</tr>
<tr>
<td>Practical</td>
<td>1</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Botany Theory</td>
<td>4</td>
<td>75 x 4 = 300</td>
<td>300</td>
<td>400</td>
</tr>
<tr>
<td>Practical</td>
<td>1</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Total Marks</td>
<td></td>
<td></td>
<td>3275</td>
<td></td>
</tr>
<tr>
<td>Audit courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theory</td>
<td>4</td>
<td>400</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>Extra credits</td>
<td></td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Total Marks</td>
<td></td>
<td></td>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>

Grand Total: 3775 Marks (3275+500); 140 Credits (Minimum)
<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Credits</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Common course: English</td>
<td>3</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Common course: English</td>
<td>3</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Common course: Additional Language</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Core Course I: Animal Diversity: Non-chordata Part-I</td>
<td>2</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Complementary course: Chemistry</td>
<td>2</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Complementary course: Botany</td>
<td>2</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Audit Course: Environmental studies</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>20</td>
<td>575</td>
</tr>
<tr>
<td>II</td>
<td>Common course: English</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Common course: English</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Common course: Additional Language</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Core Course II: Animal Diversity: Non-chordata Part-II</td>
<td>2</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Complementary course: Chemistry</td>
<td>2</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Complementary course: Botany</td>
<td>2</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Audit Course: Disaster Management</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>22</td>
<td>625</td>
</tr>
<tr>
<td>III</td>
<td>Common course: English</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Common course: Additional Language</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Core Course III: Animal Diversity: Chordata Part-I</td>
<td>3</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Complementary course: Chemistry</td>
<td>2</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Complementary course: Botany</td>
<td>2</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Audit Course: Human Rights/Intellectual Property Rights/Consumer Protection</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>19</td>
<td>525</td>
</tr>
<tr>
<td>IV</td>
<td>Common course: English</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Common course: Additional Language</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Core course IV: Animal Diversity: Chordata Part-II</td>
<td>3</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Core course V: Zoology Core Practical – I [Practical IA +IB+IC+ID]</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Complementary course: Chemistry</td>
<td>2</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Complementary course: Chemistry Practical</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Complementary course: Botany</td>
<td>2</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Complementary course: Botany Practical</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Audit Course: Gender studies/Gerontology</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Extra credits (Maximum)</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>35</td>
<td>925</td>
</tr>
<tr>
<td>Semesters</td>
<td>Course</td>
<td>Credits</td>
<td>Marks</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>V</td>
<td>Core Course VI: Cell Biology and Genetics</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Core Course VII: Biotechnology, Microbiology and Immunology</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Core Course VIII: Biochemistry and Molecular Biology</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Core Course IX: Methodology in Science, Biostatistics and Bioinformatics</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Open course: Any other streams</td>
<td>3</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>19</td>
<td>475</td>
</tr>
<tr>
<td>VI</td>
<td>Core Course X: Physiology and Endocrinology</td>
<td>3</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Core Course XI: Reproductive and Developmental Biology</td>
<td>3</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Core Course XII: Environmental and Conservation Biology</td>
<td>3</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Core Course XIII: Ethology, Evolution and Zoogeography</td>
<td>3</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Core Course XIV: Elective course (Any one below)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[01] Human Genetics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[02] Aquaculture, Animal Husbandry & Poultry science</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[03] Applied Entomology</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core Course XV: Zoology Core Practical- II [Practical IIA + IIB]</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Core Course XVI: Zoology Core Practical- III [Practical IIIA+ IIIB]</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Core Course XVII: Project Work and Field study</td>
<td>2+1</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>25</td>
<td>650</td>
</tr>
<tr>
<td></td>
<td>Grand Total</td>
<td>140</td>
<td>3775</td>
</tr>
<tr>
<td>Semester</td>
<td>Core/Open/ Elective courses</td>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------------</td>
<td>------</td>
<td>--------------</td>
</tr>
<tr>
<td>I</td>
<td>Theory I</td>
<td>ZOL1B01T</td>
<td>Animal Diversity : Nonchordata Part-I</td>
</tr>
<tr>
<td></td>
<td>Practical I*A</td>
<td>--</td>
<td>Practical related to ZOL1B01T</td>
</tr>
<tr>
<td>II</td>
<td>Theory II</td>
<td>ZOL2B02T</td>
<td>Animal Diversity : Nonchordata Part-II</td>
</tr>
<tr>
<td></td>
<td>Practical I*B</td>
<td>--</td>
<td>Practical related to ZOL2B02T</td>
</tr>
<tr>
<td>III</td>
<td>Theory III</td>
<td>ZOL3B03T</td>
<td>Animal Diversity: Chordata Part-I</td>
</tr>
<tr>
<td></td>
<td>Practical I*C</td>
<td>--</td>
<td>Practical related to ZOL3B03T</td>
</tr>
<tr>
<td></td>
<td>Theory IV</td>
<td>ZOL4B04T</td>
<td>Animal Diversity: Chordata Part-II</td>
</tr>
<tr>
<td></td>
<td>Practical I*D</td>
<td>--</td>
<td>Practical related to ZOL4B04T</td>
</tr>
<tr>
<td></td>
<td>Practical-I</td>
<td>{IA +IB+ IC+ ID}</td>
<td>ZOL4B05P</td>
</tr>
<tr>
<td></td>
<td>Theory V</td>
<td>ZOL5B06T</td>
<td>Cell Biology and Genetics</td>
</tr>
<tr>
<td></td>
<td>Theory VI</td>
<td>ZOL5B07T</td>
<td>Biotechnology, Microbiology and Immunology</td>
</tr>
<tr>
<td></td>
<td>Practical II*A</td>
<td>--</td>
<td>Practical related to ZOL5B06T & 07T</td>
</tr>
<tr>
<td></td>
<td>Theory VII</td>
<td>ZOL5B08T</td>
<td>Biochemistry and Molecular Biology</td>
</tr>
<tr>
<td></td>
<td>Theory VIII</td>
<td>ZOL5B09T</td>
<td>Methodology in Science, Biostatistics and Bioinformatics</td>
</tr>
<tr>
<td></td>
<td>Practical II*B</td>
<td>--</td>
<td>Practical related to ZOL5B08T, & 09T</td>
</tr>
</tbody>
</table>
| | #Open Course +++ (for other streams) | ZOL5D01T, ZOL5D02T, ZOL5D03T | • Reproductive Health and Sex Education
• Nutrition, Health & Hygiene
• Applied Zoology (Any one) | 3 | 54 | 3 | 60 | 15 | 75 | 2 |
| | Theory IX | ZOL6B10T | Physiology and Endocrinology | 3 | 54 | 3 | 60 | 15 | 75 | 2 |
| | Theory X | ZOL6B11T | Reproductive and Developmental Biology | 3 | 54 | 3 | 60 | 15 | 75 | 2 |
| | Practical III*A | -- | Practical related to ZOL6B10T & 11T | 4 | 72 | ** | -- | -- | -- | -- |
| | Theory XI | ZOL6B12T | Environmental and Conservation Biology | 3 | 54 | 3 | 60 | 15 | 75 | 2 |
| | Theory XII | ZOL6B13T | Ethology, Evolution and Zoogeography | 3 | 54 | 3 | 60 | 15 | 75 | 2 |

Total Credits: 58

(w.e.f. 2019 Admission)
<table>
<thead>
<tr>
<th>Semester</th>
<th>Core/Open/ Elective courses</th>
<th>Code</th>
<th>Course Title</th>
<th>Instructional hours/week</th>
<th>Instructional hrs in a semester</th>
<th>Credits</th>
<th>External Marks</th>
<th>Internal marks</th>
<th>Total marks</th>
<th>Duration of Exam (hrs)</th>
</tr>
</thead>
</table>
| Theory XIII | Elective Course## | ZOL6B14(E)01T | • Human Genetics
• Aquaculture, Animal Husbandry & Poultry science
• Applied Entomology (Any one) ## | 3 | 54 | 2 | 60 | 15 | 75 | 2 |
| | | ZOL6B14(E)02T | | | | | | | | | |
| | | ZOL6B14(E)03T | | | | | | | | |
| | Practical III*B | | Practical related to theory core course ZOL6B12T, 13T & ZOL6B14(E)01T/ (E)02T/ (E)03T | 4 | 72 | ** | -- | -- | -- | |
| | | Project work / Field study | 2 | 32 | *** | -- | -- | -- | |
| | | ZOL6B16P | Zoology Core Practical II (Practical related to ZOL5B06T, 07T, 08T, 09T) | 8 | 144 | 4** | 80 | 20 | 100 | 4 |
| | | ZOL6B16P | Zoology Core Practical III (Practical related to ZOL6B10T, 11T, 12T, 13T & 14T (E)01/ (E)02/ (E)03) | 8 | 144 | 4** | 80 | 20 | 100 | 4 |
| | | ZOL6B17PF | Project work & Field study | -- | -- | 2+1 | *** | 60 | 15 | 75 | |
| | Total | | | | | 58 | 1220 | 305 | 1525 | |

Core courses 1450 + Open course 75 = 1525 Marks

Scheme of evaluation: External 80 % + Internal 20 %

* Practical examination for 1st, 2nd, 3rd and 4th semesters will be held at the end of IV semester.

** Practical examination for 5th and 6th semesters will be held at the end of VI semester.

*** Project work – 2 credits; Field study – 1 credit. ** External evaluation of Project work and Field study report will be conducted at the end semester VI after Practical III (External: 80% Marks + Internal: 20 % marks; Total: 75 Marks). (It includes a Viva-voce based on report of Project work and field study).

Project: External 48 marks + Internal 12 marks = 60 marks
Field study report: External 12 marks + Internal 3 marks = 15 marks

Open course of any one course (ZOL5D01T/ ZOL5D02T/ ZOL5D03T) opted by the dept. is for other streams.

Open course Theory: 80% marks for external and 20% marks for internal evaluation.

+++ See Appendix of Open course

Elective course of any one course (ZOL6B14(E)01/ ZOL6B14(E)02/ ZOL6B14(E)03) opted by the dept. is for Core course.
Table 6

+++Appendix

B.Sc. ZOOLOGY OPEN COURSE
For students of other streams

STRUCTURE OF OPEN COURSE
Course code, Title, Instructional hours, Credits, Marks and Duration of Examination

Total Credits: 3 (External 80% and Internal 20%)
(w.e.f. 2019Admission)

<table>
<thead>
<tr>
<th>Semester</th>
<th>Open Course</th>
<th>Code</th>
<th>Course content</th>
<th>Instructional hrs/week</th>
<th>Instruction hrs in a semester</th>
<th>Credits</th>
<th>External Marks</th>
<th>Internal marks</th>
<th>Total marks</th>
<th>Duration of Exam (hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>Theory [Any one]</td>
<td>ZOL5D01T</td>
<td>Open Course 01: Reproductive Health and Sex Education</td>
<td>3</td>
<td>54</td>
<td>3</td>
<td>60</td>
<td>15</td>
<td>75</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZOL5D02T</td>
<td>Open Course 02: Nutrition, Health and Hygiene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZOL5D03T</td>
<td>Open Course 03: Applied Zoology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>TOTAL</td>
<td>3</td>
<td>54</td>
<td>3</td>
<td>60</td>
<td>15</td>
<td>75</td>
<td>2</td>
</tr>
</tbody>
</table>

Open course of any one course (ZOL5D01T/ ZOL5D02T/ ZOL5D03T) opted by the dept. is for students of other streams.

There shall be one open course in core subjects in the fifth semester. The open course shall be open to all the students in the institution except the students in the parent department. The students can opt that course from any other department in the institution. Each department can decide the open course from a pool of three courses offered by the University. For open courses there shall be a minimum of 10 and maximum of 75 students per batch. Total credits allotted for open course is 3 and the hours allotted is 3. If there is only one programme in a college, they can choose either language courses or physical education as open course.
OUTCOMES AND OUTCOME BASED EDUCATION (OBE)

Outcomes are what the students are expected to be able to do at the end of a unit of learning. The unit of learning is three year formal programme.

An Outcome:

- Should unambiguously state what the student should be able to do/perform.
- What the students do or perform are observable and assessable?
- Students should be able to understand what it means (comprehensible).
- Should be able to provide guidance to students in planning their learning.

Outcome Based Education (OBE) was introduced by William Spady in early 1990s for American school system and eventually adapted by higher education systems. This is an approach to education in which decisions about the curriculum and instructions are driven by the exit learning outcomes that the students should display at the end of a programme or a course. OBE establish the conditions and opportunities within the system that enable and encourage all students to achieve those essential outcomes. A system based on outcomes gives top priority for learning, accomplishments and results.

Advantages of OBE

- **Relevance**: Outcome based education promotes fitness for practice and education for capability.
- **Discourse**: The process of identification of the outcomes within an institution promotes discussion of fundamental questions.
- **Clarity**: An explicit statement of what the educational process aims to achieve clarifies the curriculum for both students and teachers, and provides a focus for teaching and learning.
- ** Provision of a Framework**: OBE provides a robust framework for integration of the curriculum.
- **Accountability**: By providing an explicit statement of what the curriculum is setting out to achieve, OBE emphasizes accountability.
- **Self Directed Learning**: If students are clear about what they are trying to achieve, they can take more responsibility for their own learning. OBE thus promotes a student-centered approach to learning and teaching.
- **Flexibility**: OBE does not specify educational strategies or teaching methods.
- **Guide for Assessment**: The outcomes provide the framework for student examinations.
- **Facilitates Curriculum Evaluation**: The outcomes provide benchmarks against which the curriculum can be judged.

Three levels of Outcomes:

- Programme Outcomes (POs)
- Programme Specific Outcomes (PSOs)
- Course Outcomes (COs)
Programme Outcomes (POs) indicate the generic knowledge, skills and attitudes that every student graduating from a UG programme should attain. While every course of the programme can address only a subset of POs, all the core courses together should be able to address all the POs.

1. Programme Outcomes (POs) for General Undergraduate Programme:

PO1. **Critical Thinking**: Take informed actions after identifying the assumptions that frame our thinking and actions, checking out the degree to which these assumptions are accurate and valid, and looking at our ideas and decisions (intellectual, organizational, and personal) from different perspectives.

PO2. **Problem Solving**: Understand and solve the problems of relevance to society to meet the specified needs using the knowledge, skills and attitudes acquired from humanities/ sciences/mathematics/social sciences.

PO3. **Effective Communication**: Speak, read, write and listen clearly in person and through electronic media in English and in one Indian language, and make meaning of the world by connecting people, ideas, books, media and technology.

PO4. **Effective Citizenship**: Demonstrate empathetic social concern and equity centered national development, and the ability to act with an informed awareness of issues and participate in civic life through volunteering.

PO5. **Environment and Sustainability**: Understand the issues of environmental contexts and sustainable development.

PO6. **Self-directed and Life-long Learning**: Acquire the ability to engage in independent and life-long learning in the broadest context of socio-technological changes.

2. Programme Specific Outcomes (PSOs):

PSOs are specific to a programme and are to be attained at the time of graduation from the programme. They are to be identified by a committee with representation from all stakeholders.

B.Sc. Zoology Programme

<table>
<thead>
<tr>
<th>PSOs</th>
<th>Program Specific Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSO1</td>
<td>Understand the biological diversity and grades of complexity of various animal forms through their systematic classification and process of organic evolution.</td>
</tr>
<tr>
<td>PSO2</td>
<td>Understand the roles of plants, animals and microbes in the sustainability of the environment and their interaction among themselves and deterioration of the environment due to anthropogenic activities.</td>
</tr>
<tr>
<td>PSO3</td>
<td>Understand the concepts and principles of biochemistry, immunology, physiology, ethology, endocrinology, developmental biology, cell biology, genetics, molecular biology and microbiology and develop technical skills in biotechnology, bioinformatics and biostatistics.</td>
</tr>
<tr>
<td>PSO4</td>
<td>Perform laboratory procedures as per standard protocols in the areas of animal diversity, systematics, cell biology, genetics, biochemistry, molecular biology, microbiology, physiology, immunology, developmental biology, environmental biology, ethology, evolution and science methodology.</td>
</tr>
</tbody>
</table>

PSOs related to elective courses are excluded since they are college specific.
3. Course Outcomes (COs):

Course outcomes are statements that describe significant and essential learning that the learners have achieved and can reliably demonstrate at the end of the course. Course outcomes are what the student should be able to do at the end of the course.

CORE COURSE: SCHEME OF INSTRUCTION

For B.Sc. Zoology Programme, Zoology is the core course. It is to be taught during all the six semesters. Course code, title, instructional hours, distribution of credits and marks, and other details of B.Sc. Zoology Programme are shown in Tables 2 to 5. The syllabus includes theory as well as practical components (see Table 5).

A. Theory

The total number of theory core courses is 13. One core course each is to be studied during the first four semesters (2 credits each for theory courses in 1st & 2nd semesters, 3 credits each in 3rd & 4th semesters) with 2 hrs of examination. Four courses each with 4 credits and 2.5 hrs of examination in 5th semester and 5 courses [4 with 3 credits each and one with 2 credits] with 2 hrs examination in 6th semesters of the programme. Towards achieving vocationalisation, 3 core courses are prescribed under Elective course for 6th semester. An institution can choose any one of the following.

Elective courses: 01. Human Genetics (Code: e.g., ZOL6B14(E)01T)
02. Aquaculture, Animal Husbandry and Poultry science
03. Applied Entomology

For developing learning, understanding and presentation skills of students, some pertinent topics are suggested for Seminar/Assignments. Questions from topics allotted for assignments/seminar are for internal assessment only.

B. Practical

Practical courses corresponding to each theory course will be conducted during the corresponding semesters. A combined practical examination relating to the first four core courses 01, 02, 03 and 04 will be held at the end of the fourth semester and that will be designated as Practical I (Code: ZOL4B05P) with 4 credits. Practical related to core courses 06 to 09 of the 5th semester form Practical II [4 credits; Code: ZOL6B15P] and 10 to 14 of 6th semester form Practical III [4 credits; Code: ZOL6B16P]. Practical examinations II and III will be conducted at end of the sixth semester.

Record: Any candidate, who turns up for a practical examination, must submit a certified bonafide record/report of work done by him/her duly attested by the teacher-in-charge and the Head of the Department at the time of practical examinations. Record should contain hand-drawn specimens with classification and notes/ mountings/dissections/sketches/experiments and results with scientific accuracy. All practical examinations are of 4 hours duration.
C. Project and Field study (ZOL6B17PF):

1. Project work
Students are assigned to undertake a project work during 6th semester on problems pertaining to biological science. Scientific study on the topic selected is required to be carried out under the supervision and guidance of faculty members. A group consisting of not more than 12 students can undertake one research project. Each student has to actively participate in the project work. The problem/topic chosen by an earlier batch of students for their project work shall not be repeated by a latter batch. A certificate to this effect has to be attached by the Head of the department.

A well documented project report duly attested by the Supervising teacher and the Head of department must be submitted by each candidate for evaluation separately on the day of 3rd practical examination in the sixth semester. The project must contain the following components.

1. Introduction with citations of relevant literature
2. Objectives of the study
3. Methodology
4. Results
5. Discussion
6. References

2. Field Study
A field study/study tour for 5 days is compulsory during the tenure of the B.Sc. Zoology programme, preferably in the V or VI semester. A total of at least 4 days should be kept apart for visiting research institution/museum, and places of biological interest and ecological importance. One day trip should be associated with Elective course chosen. A detailed tour report certified by the Teacher-in-charge of the study tour and also by the Head of the Department, specifying the places and institutions visited, date and time of visit, details of observations made must be submitted by each student in "hand written" mode for evaluation during the day of 3rd practical examination in the sixth semester. The field study/study tour report is compulsory for each student appearing for practical examination.

EXAMINATIONS
There shall be university examinations at the end of each semester. A student shall be permitted to appear for the semester examination, only if he/she secures not less than 75% attendance in each semester. Practical examinations shall be conducted by the university at the end of fourth and sixth semesters. External evaluation of Project work and field study report shall be conducted on a separate day after the completion of core course practical examination in the sixth semester.
EVALUATION AND GRADING

Mark system is followed instead of direct grading for each question. The evaluation scheme for each course shall contain two parts: viz., Internal evaluation (20% marks) and External evaluation (80% marks). The marks secured for internal assessment only need to be sent to university by the college concerned. After internal and external evaluation, marks are entered in the answer scripts. All other calculations, including grading will be done by the university using the software. For each course in the semester, letter grade and grade point are introduced in 10 point Indirect Grading System. Each course is evaluated by assigning marks with a letter grade (O, A+, A, B+, B, C, P, F, I, Ab) to that course by the method of indirect grading.

Table 7. TEN POINT INDIRECT GRADING SYSTEM

<table>
<thead>
<tr>
<th>Percentage of Marks (Both Internal & External put together)</th>
<th>Grade</th>
<th>Interpretation</th>
<th>Grade Point Average (G)</th>
<th>Range of Grade points</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>95 and above</td>
<td>O</td>
<td>Outstanding</td>
<td>10</td>
<td>9.5 - 10</td>
<td>First Class with Distinction</td>
</tr>
<tr>
<td>85 to below 95</td>
<td>A+</td>
<td>Excellent</td>
<td>9</td>
<td>8.5 – 9.49</td>
<td></td>
</tr>
<tr>
<td>75 to below 85</td>
<td>A</td>
<td>Very good</td>
<td>8</td>
<td>7.5 – 8.49</td>
<td></td>
</tr>
<tr>
<td>65 to below 75</td>
<td>B+</td>
<td>Good</td>
<td>7</td>
<td>6.5 – 7.49</td>
<td>First Class</td>
</tr>
<tr>
<td>55 to below 65</td>
<td>B</td>
<td>Satisfactory</td>
<td>6</td>
<td>5.5 – 6.49</td>
<td></td>
</tr>
<tr>
<td>45 to below 55</td>
<td>C</td>
<td>Average</td>
<td>5</td>
<td>4.5 – 5.49</td>
<td>Second Class</td>
</tr>
<tr>
<td>35 to below 45</td>
<td>P</td>
<td>Pass</td>
<td>4</td>
<td>3.5 – 4.49</td>
<td>Third Class</td>
</tr>
<tr>
<td>Below 35</td>
<td>F</td>
<td>Failure</td>
<td>0</td>
<td>0</td>
<td>Fail</td>
</tr>
<tr>
<td>Incomplete</td>
<td>I</td>
<td>Incomplete</td>
<td>0</td>
<td>0</td>
<td>Fail</td>
</tr>
<tr>
<td>Absent</td>
<td>Ab</td>
<td>Absent</td>
<td>0</td>
<td>0</td>
<td>Fail</td>
</tr>
</tbody>
</table>

CORE COURSE: SCHEME OF EVALUATION

B.Sc. Zoology Programme comprises 13 theory courses (one each in first 4 semesters, four in 5th and five in 6th semesters), 3 practical courses, and 1 course of project work & field study. The scheme of evaluation for core course theories, practicals, project work & field study contain two parts: viz., internal evaluation (20% marks) and external evaluation (80%marks).

A. THEORY [CORE COURSE]: EVALUATION SCHEME

The evaluation scheme for each course contains two parts; viz. internal evaluation and external evaluation.

I. INTERNAL EVALUATION

The internal evaluation will be a continuous process. It will be done by the faculty members of the department of Zoology of the institution where the candidate is pursuing the study. The internal assessment shall be based on a transparent system involving student’s performance in class tests, class room participation based on attendance in theory courses, assignments and seminars in respect of theory courses. For the test paper marks, at least one test paper should be conducted. If more test papers are conducted, the marks of the best one should be
taken. To ensure transparency of the evaluation process, the internal assessment marks awarded to the students in each course in a semester shall be notified on the notice board at least one week before the commencement of external evaluation. There shall not be any chance for improvement for internal marks. The course teacher(s) shall maintain the academic record of each student registered for the course, which shall be forwarded to the university by the college Principal after obtaining the signature of both course teacher and Head of the department.

For 2/3 credit courses the external examination is for 60 marks and 2 hours of duration. Such courses have an internal component of 15 marks (60 external + 15 internal = 75 marks). 4/5 credit courses have an external examination of 80 marks and 2.5 hours duration. The internal mark for such courses is 20 (external 80 + internal 20 = 100 marks). The distribution of internal marks shall be as follows:

Table 8. Criteria for Internal Evaluation of Theory courses

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Criteria</th>
<th>Maximum internal marks 15 (2/3 credit courses – Type 1)</th>
<th>Maximum internal marks 20 (4/5 credit courses – Type 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Test paper (1) (40%)</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Assignment (20%)</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Seminar (20%)</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Attendance (20%)</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Total Marks</td>
<td>15</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 8.1. Pattern of Test paper for Type 1 [2/3 credit courses]

<table>
<thead>
<tr>
<th>Duration</th>
<th>Pattern</th>
<th>Total number of questions</th>
<th>Number of questions can be answered</th>
<th>Marks for each question</th>
<th>Ceiling of Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Hour</td>
<td>Short answer</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Paragraph</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Essay</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total marks</td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

Table 8.2. Pattern of Test paper for Type 2 [4/5 credit courses]

<table>
<thead>
<tr>
<th>Duration</th>
<th>Pattern</th>
<th>Total number of questions</th>
<th>Number of questions can be answered</th>
<th>Marks for each question</th>
<th>Ceiling of Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.15 Hour</td>
<td>Short answer</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Paragraph</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Essay</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total marks</td>
<td></td>
<td></td>
<td></td>
<td>40</td>
</tr>
</tbody>
</table>

Table 8.a. Split up of internal marks for Test Paper [40%]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>85 to 100%</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>65 to below 85%</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>55 to below 65%</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>45 to below 55%</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>35 to below 45%</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Below 35%</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 8.b. Criteria for Internal Evaluation of Assignment [20%]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Submission in time</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Content</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Total Marks</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 8.c. Criteria for Internal Evaluation of Seminar [20%]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Excellent</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Good</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Average</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Total Marks</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

*Based on clarity, communication skills, use of AV aids and answer to questions.

Table 8.d. Split up of internal marks for Classroom Participation (CRP) (Attendance) [20%]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>85 and above</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>75 to below 85%</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>50 to below 75%</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>below 50%</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

II. EXTERNAL EVALUATION

Theory examinations will be conducted at the end of each semester. External evaluation carries 80% of marks. All question papers shall be set by the University. The external question papers may be of uniform pattern with 80/60 marks. The courses with 2/3 credits will have an external examination of 2 hours duration with 60 marks and courses with 4/5 credits will have an external examination of 2.5 hours duration with 80 marks. The external examination in theory courses is to be conducted by the university with question papers set by external experts.

Scheme of Examination (2/3 credit course)

The external question papers are of 60 marks and duration of external examination is 2 hrs. The pattern of question paper for external examination is as given below. The students can answer all the questions in Sections A & B. But there shall be ceiling (maximum marks that can be scored) in each section.
Table 9. Pattern of Question Paper for Theory - Type 1 [60 Marks]

<table>
<thead>
<tr>
<th>Duration</th>
<th>Pattern</th>
<th>Total number of questions</th>
<th>Number of questions can be answered</th>
<th>Marks for each question</th>
<th>Ceiling of Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Hours</td>
<td>Section A: Short answer</td>
<td>12</td>
<td>12</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Section B: Paragraph</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Section C: Essay</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Total Marks</td>
<td>Total 25</td>
<td>Total 25</td>
<td>Total 25</td>
<td>Total 60</td>
</tr>
</tbody>
</table>

Scheme of Examination (4/5 credit course):
The external question papers are of 80 marks and duration of each external examination is 2.5 hours. The pattern of question papers for external examination is as given below. The students can answer all the questions in Sections A & B. But there shall be ceiling (maximum marks that can be scored) in each section.

Table 10. Pattern of Question Paper for Theory - Type 2 [80 Marks]

<table>
<thead>
<tr>
<th>Duration</th>
<th>Pattern</th>
<th>Total number of questions</th>
<th>Number of questions can be answered</th>
<th>Marks for each question</th>
<th>Ceiling of Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5 Hours</td>
<td>Section A: Short answer</td>
<td>15</td>
<td>15</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Section B: Paragraph</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Section C: Essay</td>
<td>4</td>
<td>2</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Total Marks</td>
<td>Total 47</td>
<td>Total 47</td>
<td>Total 47</td>
<td>Total 80</td>
</tr>
</tbody>
</table>

B. PRACTICAL [CORE COURSE]: EVALUATION SCHEME
Practical corresponding to each core course will be conducted during the corresponding semesters. Internal evaluation of core course Practical I will be conducted at 4th semester and Practical II & III at 6th semester. Internal evaluation carries 20% of the total marks in each practical.

I. INTERNAL EVALUATION
Table 11. Criteria of Internal Evaluation for Practical I, II and III
[20 marks for each practical]

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Criteria</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Attendance</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Lab involvement, Performance & punctuality</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Class test (1 No.)</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>Record</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Total Marks</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 11a. Attendance

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Attendance (%)</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>85 and above</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>75 to below 85%</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>50 to below 75%</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>below 50%</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 11.b. Lab involvement, Performance & Punctuality

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Criteria</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Excellent</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Very Good</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Good</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Average</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Below Average</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 11.c. Class Test [1]

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Criteria</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>85 to 100%</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>65 to below 85%</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>55 to below 65%</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>45 to below 55%</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>35 to below 45%</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Below 35%</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 11.d. Record

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Criteria</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Punctuality in submission</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Contents</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Scientific accuracy and neatness</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total Marks</td>
<td>4</td>
</tr>
</tbody>
</table>

III. EXTERNAL EVALUATION

Practical corresponding to each core theory course will be conducted during the corresponding semesters. External evaluation will be done by a team consisting of **one internal examiner and one external examiner**.

A combined University practical examination related to the first four core theory courses (Practical I*A, I*B, I*C and I*D) will be conducted at the end of fourth semester and that will be designated as Practical I (ZOL4B05P). Practical related to V semester core theory courses (Practical II*A and II*B) form Practical II (ZOL6B15P) and Practical related to VI semester core theory courses, (Practical III*A, and III*B) form Practical III (ZOL6B16P). Practical II and III examinations will be conducted at the end of 6th semester. Credits for Practical I, II & III are 4 each. **All external practical examinations are of 4 hours duration.**

Any candidate, who turns up for a practical examination, must submit a certified and bonafide record/ report of work done by him/ her duly attested by the Teacher- in -charge and the Head of the Department at the time of practical examinations.

For external evaluation of the record of Practical - I, **One** mark may be given to the local biodiversity report done by the students on Nonchordate group of animals during I or II semester and also **one** mark for local biodiversity report on Chordate groups during III or IV semester (1+1+14= Total 16 marks).

All practical examinations will have a viva voce, during which the examiner may ask questions based on the principles/methodology/concepts of the experiments performed during the practical examinations (3 marks).
Table 12. Scheme of question paper for Practical I

<table>
<thead>
<tr>
<th>Question Nos.</th>
<th>Nature of questions</th>
<th>Total no. of questions</th>
<th>Marks for each question</th>
<th>Marks</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>I : Q 1-6</td>
<td>Spotters: Identification and classification (up to order in the case of chordates and up to class in the case of non-chordates); habits/habitat/sketches/descriptions/peculiarities/reasons/significance etc.</td>
<td>6</td>
<td>3</td>
<td>18</td>
<td>4 hours</td>
</tr>
<tr>
<td>II: Q 7</td>
<td>Minor : Mountings/dissections/display/Sketches</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>III: Q 8</td>
<td>Minor : Mountings/dissections/display/sketches</td>
<td>1</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>IV: Q 9</td>
<td>Major : Mountings/dissections</td>
<td>1</td>
<td>22</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Viva-voce</td>
<td>-</td>
<td>-</td>
<td>3*</td>
<td></td>
</tr>
<tr>
<td>V:Record</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>16*</td>
<td></td>
</tr>
</tbody>
</table>

Total Marks 80

* For external evaluation of the Practical Record I, One mark may be given to the local biodiversity report done by the students on Nonchordate group of animals during I or II semester and also one mark for local biodiversity report on Chordate groups during III or IV semester (1+1+14= Total 16 marks).

viva-voce: Examiner may ask questions based on the principles/methodology/concepts of the experiments performed during the practical examinations.

Table 13. Scheme of question paper for Practical II and III

<table>
<thead>
<tr>
<th>Question Nos.</th>
<th>Nature of questions</th>
<th>Total no. of questions</th>
<th>Marks for each question</th>
<th>Marks</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>I : Q 1-6</td>
<td>Spotters from various core courses: slides/specimens/apparatus/experimental set up etc.; Identification, sketches/descriptions/reasons/importance/significance etc.</td>
<td>6</td>
<td>3</td>
<td>18</td>
<td>4 hours</td>
</tr>
<tr>
<td>II: Q 7</td>
<td>Minor expt. : from various sections - results/explanation/graphs/sketches etc.</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>III: Q 8</td>
<td>Minor expt. : from various sections - results/explanation/graphs/sketches etc.</td>
<td>1</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>IV: Q 10</td>
<td>Major expt.: from various sections - results/explanation/sketches etc.</td>
<td>1</td>
<td>22</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Viva-voce</td>
<td>-</td>
<td>-</td>
<td>3*</td>
<td></td>
</tr>
<tr>
<td>V:Record</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Total Marks 80

Viva voce – Examiner may ask questions based on the principles/methodology/concepts of the experiments performed during the practical examinations
C. PROJECT WORK & FIELD STUDY [2+1 = 3 CREDITS]: EVALUATION SCHEME

a. Project work (2 credits)

A well documented project report duly attested by the Supervising teacher and the Head of department must be submitted by each candidate for evaluation, separately on the day of 3rd practical examination during semester VI. Report of the project work has an internal and external evaluation.

Pass conditions

• Submission of the project report and presence of the student for viva are compulsory for internal evaluation. No marks shall be awarded to a candidate if she/he fail to submit the Project Report for external evaluation.

• The student should get a minimum P Grade in aggregate of external and internal.

• There shall be no improvement chance for the marks obtained in the project report.

• In the extent of student failing to obtain a minimum of Pass Grade, the project work may be re-done and a new internal mark may be submitted by the parent department. External examination may be conducted along with the subsequent batch.

b. Field Study (1 credit)

A detailed report of field study /study tour certified by the Teacher -in- charge and also by the Head of the Department specifying the places and institutions visited, date and time of visit, details of observations made etc. must be submitted by each student in "hand written" mode for evaluation during the day of 3rd practical examination in VI semester. The field study/study tour report is compulsory for each student appearing for practical examination. Evaluation of the field study also has both internal and external components.

Evaluation of the project report and field study report will be conducted after Practical III examination in the VI semester on a separate day. Each student shall appear for a viva-voce on the project work and field study before a team of two external examiners. The questions will be based on project report and field study. Marks shall be given according to their performance.

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Components</th>
<th>External Marks</th>
<th>Internal Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Project</td>
<td>48</td>
<td>12</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>Field study / study tour</td>
<td>12</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Total Marks</td>
<td>60</td>
<td>15</td>
<td>75</td>
</tr>
</tbody>
</table>

Table: 14. Evaluation of Project and Field Study
I. INTERNAL EVALUATION (12+3=15 Marks)
The supervising teachers will assess the project report and field study report and award internal marks.

| Table 15: Criteria for Internal evaluation of Project [12 Marks; 20%] |
|-----------------|---------------------|
| Sl. No. | Components | Marks |
| 1 | Originality | 2 |
| 2 | Methodology | 2 |
| 3 | Scheme/Organisation of Report | 4 |
| 4 | Viva-voce | 4 |
| **Total Marks** | **12** |

| Table 16: Criteria for Internal evaluation of Field study/Study tour report [3 Marks; 20%] |
|-----------------|---------------------|
| Sl. No. | Components | Marks |
| 1 | Content of field study report | 2 |
| 2 | Viva-voce related to field study | 1 |
| **Total Marks** | **3** |

II. EXTERNAL EVALUATION (48+12 = 60)

| Table 17: Project work & Field study: External Examination Scheme |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|
| Relevance of the topic, statement of objectives | Project work | Field study | Grand Total (60) |
| Presentati | Project Total Marks (48) | Field study | Field study | Grand Total (60) |
| or quality of analysis/ use of statistical tools, references | Finding s and recomm endatio ns | Viva-voce | related to elective course | related to field study |
| Viva-voce | Field study | Visit to places of general biomologica l and ecologic al interest | Viva-voce | related to field study |
| Viva-voce | 10 Marks | 14 Marks | 14 Marks | 2 Marks | 8 Marks | 2 Marks | 10 Marks | 10 Marks | 14 Marks | 14 Marks | 2 Marks | 8 Marks | 2 Marks |
UNIVERSITY OF CALICUT

DEGREE PROGRAMME

ZOOGOGY OPEN COURSE

In the fifth semester, three open courses are prescribed in Zoology for undergraduate programme for students from other streams. Department of the Institution can choose any one of the following open course for students from other streams. The open course is to be taught in 3 hrs per week with a total of 54 instructional hours in the 5th semester and with 3 credits (Table 6).

Table 18: Open courses in Zoology for undergraduate programme (For students from other streams)

<table>
<thead>
<tr>
<th>Open courses (Any one)</th>
<th>Code</th>
<th>Course content</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>ZOL5D01T</td>
<td>Reproductive Health and Sex Education</td>
</tr>
<tr>
<td>02</td>
<td>ZOL5D02T</td>
<td>Nutrition, Health and Hygiene</td>
</tr>
<tr>
<td>03</td>
<td>ZOL5D03T</td>
<td>Applied Zoology</td>
</tr>
</tbody>
</table>

OPEN COURSE: SCHEME OF EVALUATION

The evaluation scheme of the open course also has internal (20%) and external (80%) components.

I. INTERNAL EVALUATION [15 marks]

Table 19. Criteria for Internal Evaluation of Open course [15 marks]

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Criteria</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Test paper (1)</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Assignment</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Seminar</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Attendance (Classroom Participation)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Marks</td>
<td>15</td>
</tr>
</tbody>
</table>

Table 19.1. Pattern of Test paper [30 Marks]

<table>
<thead>
<tr>
<th>Duration</th>
<th>Pattern</th>
<th>Total number of questions</th>
<th>Number of questions can be answered</th>
<th>Marks for each question</th>
<th>Ceiling of Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Hour</td>
<td>Short answer</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Paragraph</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Essay</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total marks</td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

Table 19.a. Split up of internal marks for Test Paper [40%]

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Range of Marks in test paper</th>
<th>Out of 6 [Maximum internal marks 15]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>85 to 100%</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>65 to below 85%</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>55 to below 65%</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>45 to below 55%</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>35 to below 45%</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Below 35%</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 19.b. Criteria for Internal Evaluation of Assignment [20%]

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Criteria</th>
<th>Out of 3 [Maximum internal marks 3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Submission in time</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Content</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Total Marks</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 19.c. Criteria for Internal Evaluation of Seminar [20%]

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Criteria</th>
<th>Out of 3 [Maximum internal marks 3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Excellent</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Good</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Average</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Total Marks</td>
<td>3</td>
</tr>
</tbody>
</table>

*Based on way of presentation, content, answer to questions etc.

Table 19.d. Split up of internal marks for Classroom Participation (CRP) (Attendance) [20%]

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Range of CRP (Attendance)</th>
<th>Out of 3 [Maximum internal marks 15]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>85 and above</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>75 to below 85%</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>50 to below 75%</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>below 50%</td>
<td>0</td>
</tr>
</tbody>
</table>

II. EXTERNAL EVALUATION (60 Marks)

Table 20. Pattern of Question Paper for Open Course [Theory]

<table>
<thead>
<tr>
<th>Duration</th>
<th>Pattern</th>
<th>Total number of questions</th>
<th>Number of questions can be answered</th>
<th>Marks for each question</th>
<th>Ceiling of Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Hours</td>
<td>Section A: Short answer</td>
<td>12</td>
<td>12</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Section B: Paragraph</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Section C: Essay</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Total Marks</td>
<td></td>
<td></td>
<td></td>
<td>60</td>
</tr>
</tbody>
</table>

INTERNAL ASSESSMENT: PRECAUTIONS

The process of Internal Assessment must be transparent. There should not be any chance for favoritism, victimization and discrimination. To avoid unpleasant situations being created, the following precautions may be taken:

1. Assignments and answer scripts of class tests are to be returned after evaluation. Grievances, if any, may be redressed forthwith. Then the papers may be collected and kept in the Department for (at least 2 years) future reference and shall be made available for verification by the university. The responsibility of evaluating the internal assessment is vested on the teacher(s), who teach the course.
2. Tabulated statement of internal evaluation must be put up on the department notice board prior to its despatch to the university.

3. A grievance redressal committee may be constituted at the department level to supervise re-tests, seminars, evaluation of assignments etc. Every student has the right to appeal against any injustice in the internal assessment/evaluation. In order to address the grievance of students a three-level Grievance Redressal mechanism is envisaged. A student can approach the upper level only if grievance is not addressed at the lower level. This can be raised at three levels.

 1. He/she may appeal against the injustice to the concerned teacher.

 2. If not satisfied, he/she may plead to the Head of the Department, who will then discuss the case with the faculty members of the Department and come to a conclusion.

 3. If the candidate again feels that justice has not been served at this level too, he/she may bring the matter before the Principal for a final hearing. The Principal will constitute a committee consisting of two senior members of the college council [nominated by the Principal]; Head of the Department of Zoology and the Principal (Chairman) himself / herself. The decision taken by the committee shall be final and binding.

The Attendance and Progress Certificate in respect of all candidates, who appear for the university examination, shall be sent to the university not later than the closing date of the corresponding year.
SYLLABUS

CORE COURSES
FIRST SEMESTER B.Sc. ZOOLOGY PROGRAMME

ZOOTOLOGY CORE COURSE- I [Theory]

ANIMAL DIVERSITY: NON-CHORDATA PART- I

Code: ZOL1B01T

[DIVERSITY, ADAPTATIONS AND FUNCTIONAL ANATOMY OF PROTOZOANS AND ACOELOMATE AND PSEUDOACOELMATE NON-CHORDATES]

[36 hours] [2 hours per week] [2 Credits]

COURSE OUTCOMES (COs)

<table>
<thead>
<tr>
<th>COs</th>
<th>Course Outcome Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Describe the principles of classification and nomenclature (5 hrs)</td>
</tr>
<tr>
<td>CO2</td>
<td>Explain the five kingdom classification of living organisms (1 hr)</td>
</tr>
<tr>
<td>CO3</td>
<td>Understand the concepts of classification of animals (4 hrs)</td>
</tr>
<tr>
<td>CO4</td>
<td>Explain the classification with examples and characteristic features of kingdom Protista and describe the morphology and structural organization of Paramecium (6 hrs)</td>
</tr>
<tr>
<td>CO5</td>
<td>Describe the characteristic features of subkingdom Mesozoa (1 hr)</td>
</tr>
<tr>
<td>CO6</td>
<td>Explain the classification of phylum Porifera and elucidate the salient features of each class (3 hrs)</td>
</tr>
<tr>
<td>CO7</td>
<td>Describe the characteristic features of phylum Cnidaria and Ctenophora, illustrate the classification of phylum Cnidaria down to classes and explain the structural organization of Obelia (8 hrs)</td>
</tr>
<tr>
<td>CO8</td>
<td>Explain the salient features of phylum Platyhelminthes and illustrate its classification down to classes (3 hrs)</td>
</tr>
<tr>
<td>CO9</td>
<td>Explain the characteristic features and classification of super-phylum Aschelminthes and phylum Nematoda (3 hrs)</td>
</tr>
<tr>
<td>CO10</td>
<td>Elucidate the characters of Pseudocoelomate minor phyla Rotifera and Gastrotricha (2 hrs)</td>
</tr>
</tbody>
</table>

Question paper pattern for external examination

[Module 1-4: Short answer 5x2=10 marks, Paragraph 3x5=15 marks, Essay 1x10= 10 marks]

[Module 5-10: Short answer 7x2=14 marks, Paragraph 4x5=20 marks, Essay 1x10=10 marks]

Section A. CONCEPTS OF CLASSIFICATION OF ORGANISMS

MODULE 1. Principles of classification and nomenclature (5 hrs)

[Short answers/paragraphs/Essays]

MODULE 2. Five kingdom classification of living organisms (1 hr)

Mention Cavalier-smith’s eight kingdom classification also.

[Short answers/Paragraphs]

MODULE 3. Concepts of classification of animals (4 hrs)

Classification based on number of cells, tissue or organ system level of organization, development of germ layers, development of symmetry, development of coelom, segmentation, homology and analogy of organs and their origin, development of mouth and digestive tract (brief account).

[Short answers/Paragraphs]
Section B. CLASSIFICATION OF KINGDOM PROTISTA

MODULE 4. Kingdom: PROTISTA (6 hrs)

Characteristic features and classification of Kingdom Protista down to phyla. [Salient features of the major groups of protists given below with notes on the examples cited]

- Phylum: Rhizopoda e.g. Entamoeba
- Phylum: Dinoflagellata e.g. Noctiluca
- Phylum: Parabasilia e.g. Trichonympha
- Phylum: Apicomplexa (=Sporozoa) e.g. Plasmodium
- Phylum: Ciliophora e.g. Vorticella.

Type Paramaecium: Morphology and structural organization [as revealed by compound microscopy]; locomotion, nutrition, excretion, osmoregulation and reproduction; conjugation in detail. [Short answers/Paragraphs/Essays]

Section C. KINGDOM: ANIMALIA

Salient features of the Major Phyla of animals and their diversity.

[Habits, habitat, morphology, functional anatomy and life history of representative types (wherever specified) and classification of each phylum down to classes, except otherwise mentioned, and examples thereof: Study of animal diversity with typical examples from each class, with emphasis on ecological and adaptive features, economic importance and such other points of biological interest expected. Only very brief account of each example is to be studied.]

MODULE 5. Subkingdom: MESOZOA (1 hr)

A brief account of Dicyemid (=Rhombozoans) mesozoans [e.g. Dicyema] and Orthonectid mesozoans [e.g. Rhopalura] [Short answers/Paragraphs]

MODULE 6. Subkingdom: PARAZOA (3 hrs)

Phylum: PORIFERA

Classification down to classes and salient features of each class.

- Class Calcarea (=Calcispongiae) e.g. Leucosolenia
- Class Demospongiae e.g. Spongilla
- Class Hexactinellida (=Hyalospongiae) e.g. Euplectella

Give an account of canal system (Asconoid, Syconoid, Leuconoid and Rhagonoid); Mention amphiblastula, parenchymula and sponge gemmule. [Short answers/Paragraphs/Essays]

MODULE 7. Subkingdom: METAZOA (8 hrs)

Phylum CNIDARIA [=COELENTERATA] (7 hrs)

Classification of the phylum down to classes and salient features of each class.

- Class Hydrozoa e.g. Halistemma, Physalia
- Class Scyphozoa e.g. Rhizostoma
Class Anthozoa e.g. Adamsia, Zoanthus, and Madrepora

Type **Obelia**: Morphology and life cycle. Polymorphism in cnidarians with special reference to siphonophores.

Phylum CTENOPHORA [=ACNIDARIA] (1 hr)
Unique features as exemplified by *Pleurobrachia*; mention cidippid larva.

[Short answers/Paragraphs/Essays]

MODULE 8. ACOELOMATA (3 hrs)

Phylum PLATYHELMINTHES
Classification down to classes and salient features of the following classes.

- Class Turbellaria e.g. Bipalium
- Class Trematoda e.g. Fasciola
- Class Cestoda e.g. Taenia

Type **Dugesia** (Planaria): Structural organization, Digestive system, locomotion and reproduction.

[Short answers/Paragraphs/Essays]

MODULE 9. PSEUDOCOELOMATA (3 hrs)

Super Phylum: ASCHELMINTHES
Classification down to phyla; highlight the heterogeneous nature of animals of this group.

Phylum: NEMATODA
Characteristic features of *Ascaris*.
Examples: *Ancylostoma*, *Enterobius*, *Wuchereria*

[Short answers/Paragraphs/Essays]

MODULE 10. PSEUDOCOELOMATE MINOR PHYLA (2 hrs)
Salient features of the following pseudocoelomate minor phyla:

- Phylum **Gastrotricha** e.g. *Chaetonotus*
- Phylum **Rotifera** e.g. *Brachionus*

[Short answers/Paragraphs]

Topics for assignments/seminars
Topics allotted for assignments/ seminars should be considered for internal assessments only, and can be subdivided among students

1. Nutrition in protozoans.
2. Reproduction in protozoans.
3. Parasitic protozoans of man.
5. Reef building corals and coral reefs.

REFERENCES
SECOND SEMESTER B. Sc. ZOOLOGY PROGRAMME

ZOOCOLOGY CORE COURSE- II (Theory)

ANIMAL DIVERSITY: NON-CHORDATA PART – II

Code: ZOL2B02T

[DIVERSITY, ADAPTATIONS & FUNCTIONAL ANATOMY OF COELOMATE NON-CHORDATES]

[36 hours] [2 hours per week] [2 Credits]

COURSE OUTCOMES [COs]

<table>
<thead>
<tr>
<th>COs</th>
<th>Course Outcome Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Explain the classification with examples and characteristic features of phylum Annelida and describe the morphology and structural organization of Neanthes (7 hrs)</td>
</tr>
<tr>
<td>CO2</td>
<td>Describe the distribution, peculiarities and affinities of phylum Onychophora (2 hrs)</td>
</tr>
<tr>
<td>CO3</td>
<td>Explain the classification of phylum Arthropoda; elucidate the salient features of each class and describe the morphology and structural organization of Penaeus (11 hrs)</td>
</tr>
<tr>
<td>CO4</td>
<td>Describe the characteristic features of phylum Mollusca, illustrate its classification down to classes and explain the structural organization of Pila globosa (8 hrs)</td>
</tr>
<tr>
<td>CO5</td>
<td>Explain the salient features of phylum Echinodermata and illustrate its classification down to classes (4 hrs)</td>
</tr>
<tr>
<td>CO6</td>
<td>Understand the salient features and affinities of phylum Hemichordata (1 hr)</td>
</tr>
<tr>
<td>CO7</td>
<td>Elucidate the characters of coelomate minor phyla Phoronida, Ectoprocta and Echiura (3 hrs)</td>
</tr>
</tbody>
</table>

Question paper pattern for external examination

[Module 1-3: Short answer 7x2=14 marks, Paragraph 4x5=20 marks, Essay 1x10= 10 marks
Module 4-7: Short answer 5x2=10 marks, Paragraph 3x5=15 marks, Essay 1x10=10 marks]

COELOMATA

MODULE 1. Phylum ANNELIDA (7 hrs)

Classification down to subclasses; salient features of the following classes and subclasses:

1. Class Polychaeta e.g. Arenicola
2. Class Clitellata
 - Subclass Oligochaeta e.g. Megascolex
 - Subclass Hirudinea e.g. Hirudinaria, Haemadipsa

Type: Neanthes [Nereis]

[Morphology, body wall, digestive system, respiratory system, circulatory system, excretory system, sense organs and reproductive system. Mention Heteronereis stage and Trochophore larva.]

[Short answers/Paragraphs/Essays]

MODULE 2. Phylum ONYCHOPHORA (2 hrs)

Peripatus [distribution, peculiarities and affinities].

[Short answers/Paragraphs]

MODULE 3. Phylum ARTHROPODA (11 hrs)

Classification down to classes (mention the five subphyla and 16 arthropod classes); salient features of the following classes:
1. Class Trilobita [brief account only]
2. Class Merostomata e.g. Limulus
3. Class Arachnida e.g. Heterometrus (Palamnaeus), Heteropoda (Huntsman spider, Order Araneae). Mention ticks and mites (Subclass Acari).
4. Class Chilopoda e.g. Scolopendra, Scutigera
5. Class Diplopoda e.g. Spirostreptus, Julius
6. Class Crustacea e.g. Sacculina, Eupagurus
7. Class Insecta e.g. Lepisma, Mantis, Tabanus, Troides minos (Southern Birdwing butterfly), Papilio buddha (Malabar Banded Peacock), Apis.

Type: *Penaeus indicus* [Prawn]
[Morphology, digestive system, respiratory system, blood vascular system, excretory system, nervous system, sense organs (statocyst, compound eye in detail), reproductive system and development] [Details of larval stages not expected].

MODULE 4. Phylum MOLLUSCA (8 hrs)
Classification down to classes; Mention Nudibranchs and *Nautilus*. Salient features of the following classes:

1. Class Aplacophora e.g. *Chaetoderma*
2. Class Polyplacophora (=Amphineura) e.g. *Chiton*
3. Class Monoplacophora e.g. *Neopilina*
4. Class Gastropoda e.g. *Turbinella*
5. Class Bivalvia (=Pelecypoda) e.g. *Perna*
6. Class Scaphopoda e.g. *Dentalium*
7. Class Cephalopoda (=Siphonopoda) e.g. *Sepia*

Type: *Pila globosa* [Apple Snail]
[Morphology, digestive system, respiratory system, blood vascular system, excretory system, nervous system, sense organs (osphradium in detail) and reproductive system].

MODULE 5. Phylum ECHINODERMATA (4 hrs)
Classification down to classes [of extant forms only]; salient features of the following classes and brief account of examples:

1. Class Crinoidea e.g. *Antedon*
2. Class Asteroidea e.g. *Astropecten*
3. Class Ophiuroidea e.g. *Ophiothrix*
4. Class Holothuroidea e.g. *Holothuria*
5. Class Echinoidea e.g. *Echinus*

Structural peculiarities of *Asterias* (star fish); water vascular system in detail.

Short answers/Paragraphs/Essays
MODULE 6. Phylum HEMICHORDATA (1 hr)

Balanoglossus: Salient features and affinities.

[Short answers/Paragraphs]

MODULE 7. COELOMATE MINOR PHYLA (3 hrs)

Salient features of the following coelomate minor phyla; mention examples specified [structure and life history not required).

1. Phylum **Phoronida**
 e.g. *Phoronis*
2. Phylum **Ectoprocta** [Bryozoa]
 e.g. *Bugula*
3. Phylum **Echiura**
 e.g. *Bonellia*

[Short answers/Paragraphs]

Topics for Assignments/Seminars

(Topics allotted for assignments/ seminars should be considered for internal assessments only, and can be subdivided among students).

1] Larval forms in Crustacea and their significance.
3] Social organization in insects.
4] Economic importance of molluscs.
5] Insect vectors of human diseases.

REFERENCES

THIRD SEMESTER B. Sc. ZOOLOGY PROGRAMME
ZOOLOGY CORE COURSE – III (Theory)
ANIMAL DIVERSITY: CHORDATA PART - I
CODE: ZOL3B03T

[TAXONOMY, DIVERSITY, STRUCTURAL ANATOMY AND ADAPTATIONS OF CHORDATES]
[54 hours] [3 hours per week] [3 credits]

COURSE OUTCOMES [COs]

<table>
<thead>
<tr>
<th>COs</th>
<th>Course Outcome Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Explain the characteristics of chordates and outline classification of the phylum Chordata (2 hrs)</td>
</tr>
<tr>
<td>CO2</td>
<td>Describe the salient features and affinities of subphylum Urochordata and its classification down to classes; elucidate the morphology and structural organization of Ascidia (5 hrs)</td>
</tr>
<tr>
<td>CO3</td>
<td>Explain the salient features and affinities of subphylum Cephalochordata with reference to Branchiostoma (4 hrs)</td>
</tr>
<tr>
<td>CO4</td>
<td>Describe the salient features of subphylum Vertebrata, illustrate its classification down to classes and elucidate the characteristics of division Agnatha (3 hrs)</td>
</tr>
<tr>
<td>CO5</td>
<td>Enumerate the salient features of superclass Pisces and illustrate its classification down to orders and the morphology and structural organization of Mugil cephalus (12 hrs)</td>
</tr>
<tr>
<td>CO6</td>
<td>Describe the salient features and affinities of class Amphibia and its classification up to orders; explain the morphology and organ systems of Hoplobatrachus tigerinus (13 hrs)</td>
</tr>
<tr>
<td>CO7</td>
<td>Elucidate the characteristic features of the class Reptilia and its classification down to orders; describe the morphology and organ systems of Calotes versicolor (15 hrs)</td>
</tr>
</tbody>
</table>

Question paper pattern for external examination
[Module 1-3: Short answer 4x2=8 marks, Paragraph 2x5=10
Module 4-7: Short answer 8x2=16 marks, Paragraph 5x5=25 marks, Essay 2x10=20 marks]

MODULE 1. Introduction [2 hrs]
Chordate characters (fundamental, general and advanced); chordates versus non-chordates; diversity of chordates; outline classification down to classes; salient features of each subphylum.

[Short answers/Paragraphs]
[Type studies with special emphasis on morphology and various functional systems such as integumentary, digestive, respiratory, circulatory, excretory, nervous and reproductive systems. Also mention the evolutionary significance]

MODULE 2. Subphylum UROCHORDATA [Tunicata] [5 hrs]
Classification of the subphylum down to classes. Affinities of urochordates with cephalochordates and vertebrates.

- Class Ascidiacea e.g. Herdmania
- Class Larvacea e.g. Oikopleura
- Class Thaliacea e.g. Doliolum

Type: Ascidia [Morphology and retrogressive metamorphosis]; add a note on neoteny and paedogenesis.

[Short answers/Paragraphs]

MODULE 3. Subphylum CEPHALOCHORDATA [4 hrs]
Type: Branchiostoma [=Amphioxus]
Morphology and anatomical features; digestive system in detail; primitive,
degenerate and specialized features [affinities and systematic position to be emphasized].

[Short answers/Paragraphs]

MODULE 4. Subphylum VERTEBRATA [3 hrs]
Salient features of subphylum vertebrata and its outline classification down to classes.

Division 1. AGNATHA
Characters, classification down to classes and examples: Myxine; Petromyzon
[mention Ammocoetes larva]

[Short answers/Paragraphs]

Division 2. GNATHOSTOMATA

MODULE 5. Superclass PISCES [12 hrs]
Classification of Pisces down to orders; salient features of the following extant groups:

Class Chondrichthyes [Cartilaginous fishes]
- Subclass Selachii e.g. *Scoliodon, Trygon*
- Subclass Holocephali e.g. *Chimaera*

Class Osteichthyes [Bony fishes]
- Subclass *Sarcopterygii*
 1. Order Crossopterygii [Coelacanths] e.g. *Latimeria*

- Subclass *Actinopterygii*
 1. Superorder Chondrostei e.g. *Acipenser*
 2. Superorder Holostei e.g. *Amia, Lepidosteus*
 3. Superorder Teleostei [Spiny-rayed fishes] e.g. *Sardinella, Rastrelliger*

Type: *Mugil cephalus* (Grey Mullet)
[Morphology, body wall, digestive system, respiratory system, circulatory system, excretory system, sense organs (neuromast organ in detail) and reproductive system].

Sub-terranean fishes from Kerala: *Aenigmachanna Gollum* (Gollum Snakehead), *Kryptoglanis shajii, Horaglanis krishnai* (Blind Catfish) & *Monopterus digressus* (Blind cave eel). Mention recent addition to ornamental fish trade - *Sahyadria denisonii* (Miss Kerala).

[Short answers/Paragraphs/Essays]

Super class TETRAPODA

MODULE 6. Class AMPHIBIA [13 hrs]
Classification of Amphibia down to orders with examples [of extant forms only].

Subclass *Stegocephalia* (extinct)

Subclass *Lissamphibia*
 1. Order Apoda (=Gymnophiona) e.g. *Ichthyophis, Uraeotyphlus*
 2. Order Caudata (=Urodela) e.g. *Necturus, Ambystoma*, mention Axolotl larva.
3. Order Anura (=Salientia) e.g. *Duttaphrynus, Rhacophorus*

Type: *Hoplobatrachus tigerinus* (Indian Bullfrog)

[Morphology, body wall, skeletal system, digestive system, respiratory system, circulatory system, excretory system, sense organs and reproductive system].

Mention about the diversity of bush frogs, dancing frogs and night frogs in Western Ghats and the discovery of *Nasikabatrachus sahyadrensis* (Purple frog).

[Short answers/Paragraphs/Essays]

MODULE 7. Class REPTILIA [15 hrs]

Classification of class Reptilia down to orders and salient features of the following orders (only extant forms):

Subclass I - Anapsida

1. Order Cotylosauria [stem reptiles] e.g. *Hylonomus*
2. Order Chelonia [common turtles, tortoises etc.] e.g. *Melanochelys, Chelone*

Subclass II - Diapsida

1. Order Rynchocephalia e.g. *Sphenodon*
2. Order Squamata
 - Suborder Lacertilia (Lizards) e.g. *Chamaeleo, Hemidactylus*
 - Suborder Ophidia (Snakes)

Identification key for venomous and non-venomous snakes.

3. Order Crocodilia e.g. *Crocodileus, Gavialis*

[Mention the extinct subclasses *Euryapsida, Parapsida* and *Synapsida* (mammal-like reptiles) and mention the origin of mammals from synapsids].

Type: *Calotes versicolor* (Garden Lizard)

[Morphology, body wall, skeletal system (exclude skull bones), digestive system, respiratory system, circulatory system, excretory system, sense organs and reproductive system].

[Short answers/Paragraphs/Essays]

Topics for Assignments/Seminars

(Topics allotted for assignments/ seminars should be considered for internal assessments only, and can be subdivided among students)

1. Migration of fishes.
2. Parental care in fishes.
4. Snake venom: nature; composition; antivenin; poly antivenins; prophylaxis.
5. Accessory respiratory organs in fishes.

REFERENCES

FOURTH SEMESTER B. Sc. ZOOLOGY PROGRAMME

ZOOLOGY CORE COURSE-IV (Theory)

ANIMAL DIVERSITY: CHORDATA PART-II

Code: ZOL4B04T

[TAXONOMY, DIVERSITY, STRUCTURAL ANATOMY AND ADAPTATIONS OF CHORDATES – AVES AND MAMMALS]

[54 hours] [3 hours per week] [3 credits]

COURSE OUTCOMES [COs]

<table>
<thead>
<tr>
<th>COs</th>
<th>Course Outcome Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Describe the classification of class Aves down to orders, salient features of each order with suitable examples (11 hrs)</td>
</tr>
<tr>
<td>CO2</td>
<td>Describe the external characters and functional systems of Columba livia (14 hrs)</td>
</tr>
<tr>
<td>CO3</td>
<td>Enumerate the salient features and classification of class Mammalia down to orders with suitable examples (11 hrs)</td>
</tr>
<tr>
<td>CO4</td>
<td>Elucidate the external characters and functional systems of Oryctolagus cuniculus (14 hrs)</td>
</tr>
<tr>
<td>CO5</td>
<td>Compare the circulatory, excretory and nervous systems of vertebrates (4 hrs)</td>
</tr>
</tbody>
</table>

Question paper pattern for external examination

[Module 1-2: Short answer 5x2=10 marks, Paragraph 3x5=15 marks, Essay 1x10= 10 marks
Module 3-4: Short answer 5x2=10 marks, Paragraph 3x5=15 marks, Essay 1x10=10 marks
Module 5: Short answer 2x2=4 marks, Paragraph 1x5=5 marks]

CLASS: AVES [25 hrs]

MODULE 1. Classification of Aves [11 hrs]

Classification of class Aves down to the orders specified; mention at least one example for each order.

Subclass *Archaeornithes* [2 hrs]

1. Order Archaeopterygiformes e.g. *Archaeopteryx lithographica* – a brief account on its discovery and evolutionary significance.

Subclass *Neornithes* [2 hrs]

Super order *Palaeognathae* [=Ratitae]

2. Order Casuariiformes e.g. *Casuarius* (Cassowary)
3. Order Dinornithiformes [=Apterygiformes] e.g. *Apteryx* (Kiwi)
4. Order Rheiformes e.g. *Rhea*
5. Order Struthioniformes e.g. *Struthio* (Ostrich)

Super order *Neognathae* [=Carinatae] [7 hrs]

6. Order Galliformes [pheasants, quail, turkeys, grouse] e.g. *Pavo cristatus*
7. Order Anseriformes [screamers, water fowls] e.g. *Anas poecilorhyncha*
8. Order Passeriformes [perching birds] e.g. *Passer domesticus*
9. Order Piciformes [woodpeckers, barbets, honeyguides] e.g. *Dinopium*
10. Order Coraciiformes [kingfishers & allies] e.g. *Alcedo atthis*
11. Order Apodiformes [swifts, humming birds] e.g. *Apus nipalensis*
12. Order Strigiformes [owls] e.g. *Bubo*
13. Order Cuculiformes [cuckoos, roadrunners, turacos] e.g. *Eudynamys*
14. Order Psittaciformes [parrots, lories, cockatoos] e.g. *Psittacula krameri*
15. Order Gruiformes [cranes, rails, coots, bustards] e.g. *Ardeotis nigriceps*
16. Order Charadriiformes [plovers, gulls, terns, auks, sand pipers] e.g. Tringa
17. Order Columbiformes [pigeons, doves, dodos, sand grouse] e.g. Columba
18. Order Falconiformes [diurnal birds of prey – falcons, hawks] e.g. Mylalus
19. Order Ciconiiformes [herons, storks, ibis, spoon bills] e.g. Ardeola grayii
20. Order Pelecaniformes [pelicans, cormorants] e.g. Pelecanus
21. Order Sphenisciformes [Impennae] e.g. Aptonodytes (penguin)
22. Order Phoenicopteriformes [flamingos] e.g. Phoenicopterus

Recent Extinctions: Passenger Pigeon [Ectopistes migratorius], Dodo [Raphus cucullatus], Pink-headed Duck [Rhodonessa caryophyllacea], Elephant Bird [Aepyornis].

Rediscovery of Jerdon’s Courser [Cursorius bitorquatus] & Forest Owlet [Athene blewitti].

[Short answers/Paragraphs/Essays]

MODULE 2. Type: Columba livia (Rock Pigeon) [14 hrs]
[External characters, integumentary system (structure of feather in detail – exclude development of feather), skeletal system (skull excluded), digestive system, respiratory system, circulatory system, excretory system, sense organs and reproductive system].

[Short answers/Paragraphs/Essays]

CLASS: MAMMALIA [25 hrs]

MODULE 3. Classification of Mammalia [11 hrs]
Classification of class Mammalia down to the orders cited with examples specified.

Subclass Prototheria [2 hr]
Infraclass Ornithodelphia [egg-laying mammals]
1. Order Monotremata e.g. Ornithorhynchus [Platypus], Tachyglossus [= Echidna]

Subclass Theria [2 hr]
Infraclass Metatheria [marsupials]
2. Order Marsupialia e.g. Didelphis [Opossum], Macropus [Kangaroo]

Infraclass Eutheria [true placental mammals] [7 hrs]
3. Order Edentata e.g. Bradypus (Sloth), Dasypus (Armadillo), Myrmecophaga (Spiny ant-eater)
4. Order Pholidota e.g. Manis (Pangolin/Scaly ant-eater)
5. Order Lagomorpha [rabbits and hares] e.g. Lepus nigricolor (Indian Hare)
6. Order Rodentia e.g. Funambulus, Ratufa (Giant squirrel)
7. Order Soricimorpha [shrews, moles] e.g. Suncus murinus, Crocidura
8. Order Erinaceomorpha e.g. Paraechinus micropus (Indian Hedgehog)
9. Order Chrysochloridea e.g. Golden mole of South Africa
10. Order Dermoptera [colugos] e.g. Cynocephalus volans (flying lemur)
11. Order Chirotidae [colugos] e.g. Cynocephalus volans (flying lemur)
12. Order Primates e.g. Loris, Macaca, Gorilla, Pongo, Hylobates, Homo
13. Order Carnivora e.g. Phoca (Seal), Odobenus (Walrus), Panthera sp., Viverricula indica (Civet), Lutrogale (Otter),
14. Order Cetacea
e.g. Physeter (Sperm whale), Delphinus (Dolphins), Phocaena (Porpoise), Balaenoptera (Baleen whale)

15. Order Artiodactyla
e.g. Sus scrofa cristatus (Wild Boar), Bos gaurus (Gaur), Giraffa (Giraffe), Hemitragus (Tahr), Rusa (=Cervus) unicolor (Sambar deer), Axis axis (Spotted deer), Moschiola (Mouse deer), Antilope cervicapra (Blackbuck).

16. Order Perissodactyla
e.g. Equus caballus (Horse), Rhinoceros

17. Order Sirenia
e.g. Trichechus (Manatee), Dugong

18. Order Proboscidea
e.g. Elephas maximus indicus [Indian elephant], Elephas maximus borneensis [Borneo pigmy elephant], Loxodonta africana [African savanna elephant] and Loxodonta cyclotis [African forest elephant].

19. Order Hyracoidea
e.g. Hyrax (Coney)

20. Order Tubulidentata
e.g. Aardvark

[Short answers/Paragraphs/Essays]

MODULE 4. Type: Oryctolagus cuniculus (European Rabbit) [14 hrs]
[External features, integumentary system, skeletal system (dentition in detail – skull excluded), digestive system, respiratory system, circulatory system (exclude arterial and venous systems), excretory system, sense organs and reproductive system].

[Short answers/Paragraphs/Essays]

MODULE 5. Comparative Anatomy [4 hrs]
Compare the circulatory, excretory and nervous systems of vertebrates.

[Short answers/Paragraphs]

Topics for Assignments/ Seminars
(Topics allotted for assignments/ seminars should be considered for internal assessments only, and can be subdivided among students)
1. Aquatic mammals and their adaptations
2. Dentition in mammals [adaptations related to food]
3. Endangered mammals of Kerala
4. Flying mammals
5. Migration in birds
6. Flight adaptations in birds
7. Flightless birds

REFERENCES

B. Sc. ZOOLOGY PROGRAMME

ZOOLOGY [CORE COURSE] PRACTICAL – I: ANIMAL DIVERSITY

Code: ZOL4B05P

[Practical I*A+ I*B+ I*C+ I*D]

[144 hours] [2 hrs per week] [Spread over first 4 semesters] [4 Credits]

COURSE OUTCOMES [COs]

<table>
<thead>
<tr>
<th>COs</th>
<th>Course Outcome Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Identify and describe specified protists and acocelomate & pseudocoelomate non-chordates and perform the culture of selected protists; understand the histological features of coelenterate, platyhelminth and nematode. (36 hrs)</td>
</tr>
<tr>
<td>CO2</td>
<td>Identify and describe specified coelomate non-chordates and the transverse sections of annelids; Perform mounting of the specified organs of selected non-chordates. (36 hrs)</td>
</tr>
<tr>
<td>CO3</td>
<td>Identify and describe specified chordates and specified bones of chordates; Prepare key for identification of venomous snakes; Perform mounting and dissection of specified organ systems of chordates. (36 hrs)</td>
</tr>
<tr>
<td>CO4</td>
<td>Identify and describe selected vertebrates and specified bones of vertebrates. (36 hrs)</td>
</tr>
</tbody>
</table>

FIRST SEMESTER B. Sc. DEGREE PROGRAMME

CORE COURSE PRACTICAL- I*A

ANIMAL DIVERSITY: NONCHORDATA Part - I

[36 hours] [2 hrs per week]

[Students are expected to make sketches with notes, while they study the specimens in the laboratory/field itself. The record must carry sketches with notes of all specimens, mountings and dissections. Emphasis must be on scientific accuracy and not on beauty of sketches.]

MODULE 1. [36 hrs]

Section A. Study of the following Non-chordate specimens:

(Choose useful and harmful forms from different habitats. All animals intended for type study are to be included. Slides / museum preparations are to be used; charts / models may be used in exceptional cases. Students are expected to identify the specimens by their generic names and assign them to the respective phyla and classes.)

1. **Protists:** Amoeba, Noctiluca, Ceratium, Entamoeba, Trichonympha, Paramecium [any 4]
2. **Poriferans:** Leucosolenia/Scypha or Spongilla, Sponge gemmule, spicules
3. **Cnidarians:** Sedentary hydrozoans: Hydra, Obelia, Obelia medusa [any 2]
 - Pelagic hydrozoans: Physalia/Velella
 - Pelagic scyphozoan: Aurelia/Rhizostoma
 - Common anthozoans: Adamsia, Edwardsia, Madrepora, Fungia, Tubipora Gorgonia [any 3]
4. **Platyhelminths:** Free living flat worm: Bipalium Dugesia
 - Parasitic flat worms: Fasciola/Taenia solium
5. **Aschelminths:** Parasitic round worms: Ascaris/Ancylostoma/Wuchereria
6. **Minor Phyla:** Sipunculus/Bonellia or any other specimen
7. **Local Biodiversity Record:** Observe water samples from the locality for live protists and make a field note.
8. Demonstration of culture methods of Protists [Amoeba/Euglena/Paramecium].

Section B. Histology
Transverse sections of a coelenterate [Hydra], a platyhelminth [Dugesia] and a nematode (Ascaris male & female).

SECOND SEMESTER B. Sc. DEGREE PROGRAMME
CORE COURSE PRACTICAL – I*B
ANIMAL DIVERSITY: NON-CHORDATA Part– II
[36 hours] [2 hrs per week]

MODULE 2. [36 hrs]
Section A. Study of the following Coelomate Non-chordate specimens:
1. **Annelids**: Polychaetes: Aphrodite, Chaetopterus, Arenicola, Tomopteris [any 2]

 - Common earthworm: Megascolex / Pheretima
 - Leech: Hirudinaria, Heamadipsa, Branchellion [any 2]

2. **Arthropods**: Items of evolutionary / taxonomic importance - Limulus, Streptocephaulus [any 1]

 - Common fouling barnacle – Lepas / Balanus
 - Parasitic crustaceans – Sacculina, Cymothoa, Argulus [any 2]
 - Crustacean of the sandy shore – Emerita / Albunea
 - Symbiotic crustacean - Eupagurus
 - Economically important crustacean - Penaeus, Scylla [any 1]
 - Vectors – Cyclops, Aedes, Musca, Xenopsylla [any 2]
 - Insect pests – Lepisma, termite queen,
 - Pest of paddy, pest of coconut, pest of stored grains [any 5]
 - Aquatic insects – Belostoma, Nepa, Ranatra [any 2]
 - Predatory insect - Dragonfly, Ant-lion, Mantis [any 1]
 - Insect which camouflage – Carausius / Phyllium
 - Common myriapods – Scolopendra/Scutigera, Julus/Spiropristus/Jonespeltis [any 2]
 - Common arachnids – Palamnaeus/ Buthus,
 - Spider / tick/mite [any 2]

3. **Molluscs**: Inter tidal mollusks – Chiton, Patella, Haliotis, Onchidium, Aplysia [any 2]

 - Ornamental gastropods – Cypraea, Murex, Turbinella [any 2]
 - Poisonous gastropod – Conus
 - Pelecypods of economic importance – Perna, Pinctada, Teredo, Ostrea [any 2]

 - Scaphopod - Dentalium
 - Cephalopods of economic/evolutionary importance
 - Sepia, Loligo, Octopus, Nautilus [any 3]

4. **Echinoderms**: Antedon, Asterias, Ophiothrix, Cucumaria,
 Echinus, cake urchin, hearturchin
5. **Hemichordate**: *Balanoglossus*

6. **Onychophoran**: *Peripatus* (Evolutionary significance)

7. **Local Biodiversity Record**: Observation of butterflies/dragonflies or any other Non-chordate group of the locality and prepare a field note.

Section B. Histology

Compare TS of any two annelids [*Neanthes*/ Earth worm/ Leech].

Section C. Mountings

1. Earthworm : Setae (a few loose setae) [Minor]
2. *Neanthes*: Parapodium [Minor]
5. Honeybee/ plant bug: Mouth parts [Minor]

Section D. Dissections (Digital versions to be downloaded or procured as per UGC guidelines)

1. *Penaeus*: Nervous system [Major]
2. Cockroach : Nervous system [Major]

THIRD SEMESTER B. Sc. ZOOLOGY PROGRAMME

CORE COURSE PRACTICAL - I*C

ANIMAL DIVERSITY: CHORDATA Part - I

[36 hours] [2 hrs per week]

[Students are expected to make sketches with notes, while they study the specimens in the laboratory and field. The record must carry notes of all specimens, mountings and dissections. Emphasis must be on scientific aspects. The record sheets related to part I and part II must be bound together to get a single Record.]

MODULE 3. [36 hrs]

Section A. Study of the following Chordate specimens:

(Students are expected to identify the specimens by their generic names and assign them to the respective phyla /classes/ orders)

1. **Urochordates**: *Ascidia*, ascidian tadpole, *Salpa*, *Doliolum*
 [any 2]
2. **Cephalochordates**: *Branchiostoma*
3. **Agnathans**: *Myxine*, *Petromyzon*, *Ammocoetes larva*
 [any 1]
4. **Fishes**:
 a. Common elasmobranchs - *Chiloscyllium*, *Stegostoma*, *Sphyrina*, *Pristis*, *Trygon*, *Narcine*, *Astripes*
 [any 3]
 b. Common edible fishes (marine) - *Sardinella*, *Rastrelliger*, *Cynoglossus*, *Parastromateus*, *Trichiurus*, *Cybium*, *Thunnus*
 [any 3]
 c. Common edible fishes (Inland) - *Eтроplus*, *Mugil*, *Wallagonia*, *Tilapia*, *Catla*, *Cirrhina*, *Labeo*, *Cyprinus*
 [any 3]
 d. Fishes with special adaptive features - *Hippocampus*, *Belone*, *Hemiramphus*, *Exocoetus*, *Tetraodon*, *Pterois*, *Ostracion*,
 [any 3]
Heteropneustes, Clarias, Arius, Anabas, Channa, Echeneis, Antennarius, Amphisile, Anguilla

5. **Amphibians**: Common amphibians - Duttaphrynus, Euphlyctis, Rhacophorus, Ambystoma, Axolotl larva, Ichthyophis/Uraeotyphlus

7. **Key for identification of venomous and non-venomous snakes.**

8. **Local Biodiversity Record**: Observe fishes/amphibians or any other vertebrate group (any one group) of the locality in their natural habitat and prepare a field note.

Section B. Histology
1. Branchiostoma - T. S. through pharyngeal region

Section C. Mountings
1. Sardine: Cycloid scale [Minor]
2. Shark: Placoid scale [Minor]

Section D. Dissections (Digital versions to be downloaded or procured as per UGC guidelines)
1. Mullet/Sardine: Alimentary canal (Major)
2. Shark: IX and X cranial nerves on one side (Major) – Demonstration only.
3. Frog: V cranial nerve - branches, root and ganglion on one side (Major) Demonstration only

5. Frog/Calotes: Arterial system on one side (demonstration only).

Section E. Osteology
1. Frog: Typical, 8th, 9th Vertebrae,
2. Frog: Pectoral & Pelvic girdles
3. Snake Vertebra [show zygosphene and zygandrum]

FOURTH SEMESTER B. Sc. ZOOLOGY PROGRAMME

CORE COURSE PRACTICAL- I*D

ANIMAL DIVERSITY: CHORDATA Part - II

[36 hours] [2 hrs per week]

MODULE 4. [36 hrs]

Section A. Study of the following Vertebrate specimens:
1. **Birds:**
 a. Fossil bird - Archaeopteryx
 b. Flightless bird - Rhea, Struthio [any 1]
 c. Wetland birds - Jacana, Duck, Egret, Heron, Ibis, Stork [any 2]
d. Shore birds – Gulls, Plovers, Terns [any 1]
e. Migratory birds - Pelican, Crane, Flamingo [any 1]
f. Birds of Prey – Falcon, Eagle, Kite, Shikra, Owl [any 2]
g. Features and adaptations of: duck, parrot, king fisher, owl, kite and wood pecker [draw sketches of the beaks and feet of 4 birds]

2. Mammals:
 a. Common insectivore – *Suncus*, Hedgehog [any 1]
 b. Common rodent – *Rattus, Bandicoota, Funambulus* [any 1]
 c. Common bat of Kerala – *Pteropus, Megaderma, Pipistrellus* [any 1]
 e. Primate – *Loris* or any other species

3. Local Biodiversity Record: Observe birds/mammals (any one group) of the locality in their natural habitat and prepare a field note.

Section B. Osteology
 a. Pigeon/ Domestic Fowl: Cervical vertebra, Pectoral girdle and Sternum, Pelvic girdle with Synsacrum [mention the component bones].
 b. Rabbit: Skull showing dentition, Atlas, axis, typical vertebra, scapula and pelvic girdle.

REFERENCES
FIFTH SEMESTER B.Sc. ZOOLOGY PROGRAMME

ZOOGOLOGY CORE COURSE- V [Theory]

CELL BIOLOGY AND GENETICS

Code: ZOL5B06T

[54 hours] [3 hours per week] [4 Credits]

COURSE OUTCOMES (COs)

<table>
<thead>
<tr>
<th>COs</th>
<th>Course outcome Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Understand the principles and applications of various types of light microscopes, electron, Scanning-tunnelling and Atomic force microscope and illustrate the histological and histochemical processing of tissues (7 hrs)</td>
</tr>
<tr>
<td>CO2</td>
<td>Explain the basic structure of a eukaryotic cell and the structure and functions of plasma membrane, mitochondria, lysosome, cytoskeletal elements and interphase nucleus (12 hrs).</td>
</tr>
<tr>
<td>CO3</td>
<td>Illustrate the nucleosome organization of chromatin and higher order structures; structure of chromosomes and giant chromosomes (2 hrs).</td>
</tr>
<tr>
<td>CO4</td>
<td>Enumerate eukaryotic cell cycle and cell division by amitosis, mitosis and meiosis (4 hrs).</td>
</tr>
<tr>
<td>CO5</td>
<td>Explain the causes of transformation, characteristics of transformed cells and the role of protooncogenes and tumor suppressor genes in malignant transformation; mechanism and significance of apoptosis (2 hrs).</td>
</tr>
<tr>
<td>CO6</td>
<td>Enumerate allelic and non-allelic gene interactions; supplementary, complementary, polymeric, duplicate and modifying genes and polygenic inheritance (5 hrs).</td>
</tr>
<tr>
<td>CO7</td>
<td>Illustrate multiple allelism and solve problems related to blood group inheritance (4 hrs).</td>
</tr>
<tr>
<td>CO8</td>
<td>Explain characteristics of linkage groups and linkage map; crossing over and calculation of recombination frequency; sex-linked, sex-influenced and sex-limited characters; sex differentiation and disorders of sexual development (8 hrs).</td>
</tr>
<tr>
<td>CO9</td>
<td>Describe the mechanisms of sex determination including chromosomal, genic, haploid-diploid mechanisms; the hormonal and environmental influence on sex determination and gynandromorphism (3 hrs).</td>
</tr>
<tr>
<td>CO10</td>
<td>Explain mutagenesis, mutagens and chromosomal and gene mutations (3 hrs).</td>
</tr>
<tr>
<td>CO11</td>
<td>Enumerate the classification and grouping of human chromosomes; numerical and mutational human autosomal and sex chromosomal anomalies; polygenic human traits and genetic counseling (4 hrs).</td>
</tr>
</tbody>
</table>

Question paper pattern for external examination

[Module 1-5 Short answer 7x2=14 marks; Paragraph 4x5=20 marks; Essay2x10=20 marks; Module 6-11 Short answer 8x2=16 marks; Paragraph 4x5=20 marks; Essay2x10=20 marks]

Section A: CELL BIOLOGY (27 hrs)

MODULE 1. Techniques in Cell Biology (7 hrs)

Microscopy (4 hrs)

Histological Techniques (2 hrs)

Histochemical Techniques (1 hr)
Mention the techniques for the demonstration of proteins (mercuric bromophenol blue method), carbohydrates (PAS) and lipids (Sudan)

MODULE 2. Structure of eukaryotic cell (12 hrs)

Plasma membrane (6 hrs)
Chemical composition and structure (unit membrane concept and fluid mosaic model), membrane lipids and membrane fluidity; significance of membrane fluidity; membrane proteins-integral proteins, peripheral proteins and lipid-anchored proteins; membrane carbohydrates.
Interactions between cells and their environment – extracellular space, glycocalyx, extracellular matrix - Mention basal lamina, collagen, fibronectin, proteoglycans and laminins.

Mitochondria (2 hrs)
Ultra-structure; mitochondrial membranes; functions of mitochondria; Biogenesis of mitochondria.

Lysosomes (1 hr)
Structure and function; polymorphism in lysosomes, lysosomal enzymes. Concept of GERL (Golgi body – Endoplasmic Reticulum – Lysosome complex).

Cytoskeleton (1 hr)
Location, ultrastructure, biochemical composition and functions of microfilaments, intermediate filaments and microtubules.

Interphase nucleus (2 hrs)
General structure and functions; nucleo-cytoplasmic index; ultrastructure of nuclear membrane and nuclear pore complex (NPC), functions of NPC; Nucleoplasm - Composition and function; Nucleolus - Structure, composition, nucleolar organizer, nucleolar cycle and functions of nucleolus. Chromatin: Euchromatin and heterochromatin.
MODULE 3. Structure of chromatin (2 hrs)
Nucleosome organization and higher order structures; Chromosome structure; Giant chromosomes - Polytene chromosomes: structure, puffs and bands; Endomitosis; significance. Lamp brush chromosomes: structure, loops and significance.

[Short answers/Paragraphs]

MODULE 4. Cell Cycle & Cell division (4 hrs)
Cell Cycle: G1, S, G2 and M phases – Check points; G0 phase. Cell division: Amitosis (brief account); Mitosis: description of all stages, cytokinesis and significance; Meiosis: description of all stages and significance. Role of centriole in animal cell division.

[Short answers/Paragraphs/Essays]

MODULE 5. Cancer and Apoptosis (2 hrs)
Characteristics of cancer cells; causes of transformation; protooncogenes and tumor suppressor genes and their role in transformation. Apoptosis, mechanism of apoptosis and its significance.

[Short answers/Paragraphs]

Section B: GENETICS (27 hrs)

MODULE 6. Interaction of genes (5 hrs)

[Short answers/Paragraphs]

MODULE 7. Multiple alleles (4 hrs)
Definition and characteristics; example: coat colour in rabbits. Blood group genetics: ABO blood group system; MN blood group and Bombay phenotype. Inheritance of Rh factor; mention erythroblastosis foetalis. Problems related to blood group inheritance (5 problems). Isoalleles, mention any one example.

[Short answers/Paragraphs/Essays]

MODULE 8. Linkage and Recombination (8 hrs)
Definition and characteristics of linkage groups, Morgan’s work on Drosophila. Types of linkage: complete and incomplete - examples; Linkage groups. Crossing over and recombination, Calculation of Recombination Frequency and Percentage; Linkage map, Map Distance; Mitotic Recombination (brief). Sex-Linked Characteristics: Types of sex-linkage - X linked characters - Colour blindness and haemophilia in humans, holandric genes – hypertrichosis. Dosage compensation – Barr body – Lyon hypothesis. Sex-Influenced and Sex-Limited Characteristics.
Sex Differentiation: Testis-determining factor (TDF), Müllerian inhibition factor. Disorders of Sexual Development (short notes) - XX males and XY females, Point mutations in the SRY gene and testicular feminization.

[Short answers/Paragraphs/Essays]

MODULE 9. Sex determination (3 hrs)
Environmental Sex Determination: Example – Bonellia, Crocodile.
Hormonal influence on sex determination: Example - sex reversal in fowl and free martin in cattle; Gynandromorphism – types and causes. Intersex (brief).

[Short answers/Paragraphs/Essays]

MODULE 10. Mutations (3 hrs)
Chromosome mutations: numerical (euploidy and aneuploidy) and structural changes (deletion, duplication, insertion, inversion, translocation).
Gene mutations: types- spontaneous, induced, somatic, gametic, forward and reverse. Types of point mutations- deletion, insertion, substitution, transversion and transition. Mutagenesis- Natural and artificial mutagenesis, Mutagenic agents: a) UV radiation and ionising radiation b) Base analogues, alkylating and intercalating agents.

[Short answers/Paragraphs/Essays]

MODULE 11. Human Genetics and Genetic counselling (4 hrs)

[Short answers/Paragraphs]

Topics for assignments/seminars
(Topics allotted for assignments/ seminars should be considered for internal assessments only, and can be subdivided among students)
1. Ribosomes: structure and functions
2. Golgi bodies: structure and functions
3. Cytoplasmic or extra nuclear inheritance:
 a) Shell coiling in Limnaea
 b) Endo-symbionts like kappa particle and sigma.
4. Mendel's experiments on pea plants
5. Mendel’s laws of inheritance

REFERENCES
Module 1-5 (Cell Biology)

Module 6-11 (Genetics)

SYLLABUS OF B.Sc. ZOOLOGY PROGRAMME

ZOOLOGY CORE COURSE - VI [Theory]

BIOTECHNOLOGY, MICROBIOLOGY AND IMMUNOLOGY

Code: ZOL5B07T

[72 hours] [4 hours per week] [4 Credits]

COURSE OUTCOMES (COs)

<table>
<thead>
<tr>
<th>COs</th>
<th>Course Outcome statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Illustrate the steps in genetic engineering and animal cell culture (12 hrs)</td>
</tr>
<tr>
<td>CO2</td>
<td>Explain transfection methods, transgenic animals and ethical issues of transgenic animals (5 hrs)</td>
</tr>
<tr>
<td>CO3</td>
<td>Enumerate the applications of biotechnology (7 hrs)</td>
</tr>
<tr>
<td>CO4</td>
<td>Understand the biological diversity of microbial forms and the various techniques for handling microbes in the laboratory (8 hrs)</td>
</tr>
<tr>
<td>CO5</td>
<td>Enumerate the basic structure and life cycle of bacteria and virus (8 hrs)</td>
</tr>
<tr>
<td>CO6</td>
<td>Understand the industrial and medical importance of microorganisms (8 hrs)</td>
</tr>
<tr>
<td>CO7</td>
<td>Describe different types of immunity and the cells and organs of the immune system (6 hrs)</td>
</tr>
<tr>
<td>CO8</td>
<td>Explain antigen, antibody, immunity and major histocompatibility complex (9 hrs)</td>
</tr>
<tr>
<td>CO9</td>
<td>Enumerate autoimmune and immunodeficiency diseases and immunology of tumor and organ transplantation (9 hrs)</td>
</tr>
</tbody>
</table>

Question paper pattern for external examination

[Module 1-3 Short answer 3x2=6 marks; Paragraph 2x5=10 marks; Essay 2x10=20 marks; Module 4-6 Short answer 6x2=12 marks; Paragraph 3x5=15 marks; Essay 1x10=10 marks; Module 7-9 Short answer 6x2=12 marks; Paragraph 3x5=15 marks; Essay 1x10=10 marks]

SECTION A: BIOTECHNOLOGY (24 hrs)

MODULE 1: Genetic Engineering and Animal cell culture (12 Hrs)

Genetic Engineering (10 hrs)

Concept and scope of biotechnology – Mention branches of biotechnology. Introduction to the concept of Recombinant DNA Technology: Cloning vectors (Plasmid, pBR322, Phages, Cosmids, Virus vectors, YAC vector and Bac vector).

Enzymes: Type II Restriction endonucleases, polynucleotide kinase, exonuclease, terminal transferase, reverse transcriptase and DNA ligase.

Construction of Recombinant DNA: Preparation of vector and donor DNA, Joining of vector DNA with the donor DNA, Introduction of recombinant DNA into the host cell and selection of transformants (brief account).

Animal Cell Culture (2 hrs)

Cell culture media (Natural and Defined), Preparation and Sterilization, Primary cell culture, Cell Lines, Pluripotent Stem Cells, Cryopreservation of cultures. Somatic cell fusion and HAT selection of hybrid clones – production of monoclonal antibodies.

[Short answers/Paragraphs/Essays]

MODULE 2: Transgenic Organisms (5 hrs)

Transfection Methods: (Chemical treatment, Electroporation, Lipofection, Microinjection, Retroviral vector method, Embryonic stem cell method and Shot Gun Method). Transgenic Animals: (Fish, Pig, Sheep, Rabbit, Mice, Goat and...
Insects), Knock Out Mice. Human Cloning and Ethical Issues of transgenic Animals.

[Short answers/Paragraphs/Essays]

MODULE 3: Applications of Biotechnology (7hrs)
Molecular diagnosis of genetic diseases (Cystic Fibrosis, Huntington’s Disease and Sickle Cell Anemia). Vaccines and Therapeutic agents, Recombinant DNA in Medicines (Recombinant Insulin and Human Growth Hormone).
Human gene therapy (gene therapy for severe combined immune deficiency).
Enzymes in detergents and leather industries, Heterologous protein production, Biofiltration, Bioremediation, Bioreacting, Molecular pharming and Bioreactors.
Molecular markers (brief account) RFLP, RAPD, VNTR, SNPs and their uses.

[Short answers/Paragraphs/Essays]

Section B: MICROBIOLOGY (24 hrs)

MODULE 4: Introduction and Methods in Microbiology (8 hrs)
Introduction
Microbial Diversity: Archaebacteria, Eubacteria, Prochlorophyta, Algae, Fungi, Protozoa, Viruses, Viroids, Prions, Mycoplasma and Rickettsias

Methods in Microbiology

[Short answers/Paragraphs]

MODULE 5: Basic Concepts in Bacteriology and Virology (8 hrs)
Bacteria: Structure of a typical Bacterium, Different types of bacterial culture (Batch, Synchronous, Arithmetic), Bacterial growth: Growth phases, Methods of growth determination.

[Short answers/Paragraphs/Essays]

MODULE 6: Industrial and Medical Microbiology (8 hrs)
Industrial Microbiology
Bioengineering of microorganisms for industrial purposes: Microbial production of industrial products (micro-organisms involved, media, fermentation conditions, downstream processing and uses) - citric acid, ethanol, wine, penicillin, glutamic acid, riboflavin, enzymes (amylase, cellulase, protease, lipase, glucose isomerase, glucose oxidase). Bioinsecticides (Bt) and Steroid biotransformation.
Medical Microbiology (4 hrs)

Normal microflora of the human body: skin, throat, gastrointestinal tract and urogenital tract. Diseases caused by: (with reference to causative agent, symptoms and mode of transmission).

a) Bacteria: anthrax, tuberculosis, typhoid, whooping cough, pneumonia, cholera, gonorrhea, and syphilis.
b) Viruses: polio, chicken pox, herpes, hepatitis, rabies, dengue, AIDS and chikungunya.
c) Protozoa: malaria, kala-azar and toxoplasmosis.
d) Fungi: dermatomycoses and opportunistic mycoses

Bacterial drug resistance.

[Short answers/Paragraphs/Essays]

Module C: IMMUNOLOGY (24 hrs)

Section C: IMMUNOLOGY (24 hrs)

Module 7: Cells and organs of immune system (6 hrs)

Introduction (1 hr)
Immunity: Natural and acquired, active and passive, immunization, vaccines, mechanisms of innate immunity - barriers, inflammation, phagocytosis.

Cells of the immune system (3 hrs)
B- cells, T – cells, NK cells, monocytes, macrophages, neutrophils, basophils, eosinophils, mast cells, and dendritic cells (APCs).

Organs of the immune system (2 hrs)
Lymphoid organs: Primary (thymus, bone marrow) and secondary (lymph nodes, spleen).

[Short answers/Paragraphs]

Module 8: Antigens, antibodies, immunity and MHC (9 hrs)

Antigens (3 hrs)
Types, factors for immunogenecity, exogenous antigens, endogenous antigens, adjuvant, haptens, epitopes, antigen-antibody reaction - precipitation reaction, agglutination reaction, agglutination inhibition reaction.

Immunoglobulins (2 hrs)
Structure, classification and biological functions. Mention immunoglobulin gene families – κ and λ light chain families and the heavy chain family.

Immunity (2 hrs)
Types of Immunity: humoral and cell mediated immunity, primary and secondary response, generation of cytotoxic T- cells (CTLs), NK cell mediated cytotoxicity, ADCC and cytokines (brief).

Major Histocompatibility Complex (2 hr)
MHC, HLA, Class I MHC, Class II MHC molecules and structure. Mention Class III MHC.

[Short answers/Paragraphs/Essays]
MODULE 9: Autoimmune and Immunodeficiency diseases, Tumor and transplantation immunology (9 hrs)

Autoimmune diseases (2 hrs)
Auto immune diseases: Systemic (SLE, multiple sclerosis and rheumatoid arthritis). Organ specific-(Hashimoto’s thyroiditis, Grave’s disease, Myasthenia gravis)

Immunodeficiency disease (3 hrs)
Primary (Bruton’s Disease, Di-George syndrome and SCID)
Secondary (AIDS) – Clinical course of HIV – acute infection, seroconversion, window period, chronic latent phase - lymph adenopathy and crisis phase. Mention antiretroviral therapy (ART)

Tumor immunology (2 hrs)
Malignant transformation of cells, tumor antigens, immune response to tumor antigens.

Transplantation Immunology (2 hrs)
Transplantation Antigens, Various organ transplantation (liver, kidney, heart, skin), Xenotransplantation

Topics for assignments/seminars
(Topics allotted for assignments/ seminars should be considered for internal assessments only, and can be subdivided among students)
1. Microbiological analysis of drinking water
2. Biogas plant
3. Social acceptance of biotechnology
4. Biofertilizers
5. DNA vaccines
6. Immunity and malnutrition

REFERENCES
Module 1-3 (Biotechnology)

Module 4-6 (Microbiology)

Module 7-9 (Immunology)

FIFTH SEMESTER B.Sc. ZOOLOGY PROGRAMME

ZOOGOLOGY CORE COURSE- VII [Theory]

BIOCHEMISTRY AND MOLECULAR BIOLOGY

Code: ZOL5B08T

[72 hours] [4 hours per week] [4 Credits]

COURSE OUTCOMES (COs)

<table>
<thead>
<tr>
<th>COs</th>
<th>Course Outcome statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Understand the elements of biological importance and the non-covalent interactions that stabilize biomolecules (1 hr).</td>
</tr>
<tr>
<td>CO2</td>
<td>Describe the classification, types, structure, reactions and biological roles of carbohydrates, and diabetes Type I and II (6 hrs)</td>
</tr>
<tr>
<td>CO3</td>
<td>Enumerate the properties and classification of amino acids and their standard abbreviations; hierarchical levels of protein structure, classification, separation, purification and sequencing of proteins (7 hrs).</td>
</tr>
<tr>
<td>CO4</td>
<td>Explain the classification and functions of lipids and fatty acids; chemistry and structure of nucleic acids and sequencing of DNA (7 hrs)</td>
</tr>
<tr>
<td>CO5</td>
<td>Understand the classification, nomenclature and properties of enzymes; enzyme action, co-enzymes, cofactors, isoenzymes, ribozymes and allosteric enzymes (3 hrs)</td>
</tr>
<tr>
<td>CO6</td>
<td>Explain glycolysis, Kreb’s cycle, glycogenolysis, glyconeogenesis, HMP pathway; amino acid and fatty acid oxidation and oxidative phosphorylation (12 hrs).</td>
</tr>
<tr>
<td>CO7</td>
<td>Describe the mechanism of DNA duplication and the role of enzymes (4 hrs).</td>
</tr>
<tr>
<td>CO8</td>
<td>Understand the concept of gene and gene expression; genetic code and wobble hypothesis (6 hrs).</td>
</tr>
<tr>
<td>CO9</td>
<td>Explain the mechanism of transcription and post-transcriptional modification of hnRNA (7 hrs).</td>
</tr>
<tr>
<td>CO10</td>
<td>Enumerate the processes of translation and post-translational modification and targeting of peptides (7 hrs).</td>
</tr>
<tr>
<td>CO11</td>
<td>Describe the regulation of trp operon, C-value, repetitive DNA, satellite DNA, selfish DNA, overlapping genes, pseudogenes, cryptic genes, transposons and retrotransposons (8 hrs).</td>
</tr>
<tr>
<td>CO12</td>
<td>Explain the structure and life cycle of bacteriophages and the gene transfer mechanisms in bacteria (4 hrs).</td>
</tr>
</tbody>
</table>

Question paper pattern for external examination

[Module 1-6 Short answer 7x2=14 marks; Paragraph 4x5=20 marks; Essay 2x10=20 marks; Module 7-12 Short answer 8x2=16 marks; Paragraph 4x5=20 marks; Essay 2x10=20 marks]

BIOCHEMISTRY (36 hrs)

MODULE 1. Introduction (1 hr)

Elements of biological importance; non-covalent bonds that stabilize biomolecules – Hydrogen bonds, hydrophobic interactions and Van der Waals Interactions.

[Short answer questions]

MODULE 2. Carbohydrates (6 hrs)

Monosaccharides: Aldoses and ketoses, trioses, tetrose, pentoses and hexoses; glyceraldehyde, dihydroxyacetone, ribose, deoxyribose, ribulose, glucose and fructose. Cyclization of pentoses and hexoses, optical activity and mutarotation, inversion and invert sugar, monosaccharides as reducing agents, Osazones. Disaccharides: Glycosidic bond, reducing and non-reducing disaccharides, maltose and sucrose as examples.
Polysaccharides: Starch and glycogen, amylose and amylopectin, homo and heteropolysaccharides.

Biological functions of carbohydrates; Mention diabetes Type I and II.

[Short answers/Paragraphs]

MODULE 3. Amino acids, peptides and protein (7 hrs)

Proteinogenic amino acids, abbreviations (three letter and single letter) of the standard amino acids, structure and classification and general properties of amino acids, isoelectric point, peptide bonds, nonstandard amino acids.

Peptides and proteins: Classification of proteins - simple, conjugated and derived.

Structure of proteins: primary, secondary, tertiary and quaternary structure.

Denaturation of proteins.

Separation and purification of proteins: Paper chromatography, column chromatography, ion exchange chromatography, size exclusion chromatography, affinity chromatography and high - performance liquid chromatography (Brief account only). Polyacrylamide Gel Electrophoresis.

Sequencing of peptides: Sanger’s method, Edman degradation procedure and Mass spectrometry (Brief account only)

[Short answers/Paragraphs/Essays]

MODULE 4. Lipids and Nucleic acids (7 hrs)

Lipids

(2 hrs)

Classification and functions (simple, compound, derived and miscellaneous lipids).

Fatty acids: saturated and unsaturated; triglycerides; mention phospholipids; lecithins; cephalins; phosphoinositides; prostaglandins and cholesterol. Mention the clinical significance of lipid profile estimation.

Nucleic acids

(5 hrs)

Chemistry and structure of purines and pyrimidines, structure of nucleotides (ATP, dATP and cAMP), Watson – Crick model of DNA, Different forms of DNA, secondary and tertiary structure of tRNA. Sequencing of DNA by Sanger's method. Mention Maxam-Gilbert sequencing.

[Short answers/Paragraphs/Essays]

MODULE 5. Enzymes and co-enzymes (3 hrs)

Classification, nomenclature and properties of enzymes; Active centre, mechanism and theories of enzyme action, enzyme inhibition, co-enzymes (NAD, FAD) and cofactors. Mention isozymes, ribozymes and allosteric enzymes.

[Short answers/Paragraphs/Essays]

MODULE 6. Metabolism of carbohydrates, proteins and lipids (12 hrs)

Glycolysis, Kreb's cycle, glycogenesis, glycogenolysis, gluconeogenesis and HMP pathway. Amino acid oxidation and production of urea.

β-oxidation of fatty acids.

Brief account on redox reactions, redox potentials, electrochemical gradients, electron transport chain, oxidative phosphorylation, proton gradient and chemiosmotic synthesis of ATP.

[Short answers/Paragraphs/Essays]
MOLECULAR BIOLOGY (36 hrs)

MODULE 7. DNA Replication (4 hrs)
Semi-conservative and semi-discontinuous, priming of Okazaki fragments, primer removal and joining of Okazaki fragments, Meselson and Stahl experiment.

[Short answers/Paragraphs/Essays]

MODULE 8. Gene and genetic code (6 hrs)

Gene concept (2 hrs)
Classical and modern concepts, housekeeping and luxury genes. Gene action: gene expression and gene products; one gene one enzyme hypothesis; one gene one polypeptide hypothesis. Central dogma of molecular biology, reverse transcription and modified central dogma.

Genetic code (4 hrs)
Deciphering of genetic code, experiments of Nirenberg and Khorana, codon assignments, properties of the genetic code and wobble hypothesis.

[Short answers/Paragraphs/Essays]

MODULE 9. Transcription (7 hrs)
RNA polymerases of eukaryotes and prokaryotes; promoters, terminators, enhancers and silencers.
Transcription unit, mono and polycistronic transcription units; coupling of transcription with translation in bacteria.
Initiation, elongation and termination of transcription (brief account).
Post transcriptional modification of the primary transcript – hnRNA, capping, poly (A) tailing and splicing (brief account), spliceosomes.

[Short answers/Paragraphs/Essays]

MODULE 10. Translation (7 hrs)
Activation of amino acids and aminoacyl tRNA synthetases; role of tRNA as adaptor molecules in translation. Role of ribosomes and active centres of ribosomes.
Initiation, elongation and termination of translation.
Post translational modification of the peptide chain: cleavage, formation of disulfide-bridges, acetylation, glycosylation, myristoylation, sulphation, hydroxylation, prenylation, nitrosylation, ubiquitination and SUMOylation.
Protein folding and role of molecular chaperones; Protein targeting (brief account)

[Short answers/Paragraphs/Essays]

MODULE 11. Regulation of gene expression and organization of genome (8 hrs)

Regulation of gene expression (4 hrs)
Operon organization of bacterial transcription units; trp operon and its regulation.
Regulatory RNAs – ncRNAs, miRNAs, piRNAs, siRNAs and RNA interference. Mention CRISPR-Cas9 and targeted genome editing.

Organization of genome (4 hrs)
Sequence components of eukaryotic genome – non-repetitive, moderately repetitive and highly repetitive DNA; satellite DNA. Mention selfish DNA. C-value and C-value paradox. Overlapping genes, pseudogenes, cryptic genes, transposons and
retrotransposons. Human genome and human genome project (brief account). Mitochondrial and chloroplast genome (brief account).

[Short answers/Paragraphs/Essays]

MODULE 12. Genetics of bacteria and phages (4 hrs)
Conjugation in bacteria. Transduction – generalized and specialized; sexduction. Structure and life cycle of a bacteriophage; temperate and virulent phages; lysogeny and lysis.

[Short answers/Paragraphs]

Topics for assignments/seminar
(Topics allotted for assignments/ seminars should be considered for internal assessments only, and can be subdivided among students)
1. B-Complex vitamins as co-enzymes
2. Different types of eukaryotic RNAs
3. Biological functions of steroids
4. Lac operon and its regulation
5. Role of enzymes in DNA replication

REFERENCES

Module 1-6 (Biochemistry)

Module 7-12 (Molecular Biology)

FIFTH SEMESTER B.Sc. ZOOLOGY PROGRAMME

ZOOLOGY CORE COURSE- VIII [Theory]

METHODOLOGY IN SCIENCE, BIOSTATISTICS AND BIOINFORMATICS

Code: ZOL5B09T

[54 hours] [3 hours per week] [4 Credits]

COURSE OUTCOMES (COs)

<table>
<thead>
<tr>
<th>COs</th>
<th>Course Outcome Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Explain science, its importance, disciplines and the major steps in formulating a hypothesis, various hypothesis models, theory, law and importance of animal models, simulations and virtual testing (6 hrs)</td>
</tr>
<tr>
<td>CO2</td>
<td>Illustrate the principles and procedures in designing experiments and elaborate the requirements for carrying out experiments (4 hrs)</td>
</tr>
<tr>
<td>CO3</td>
<td>Describe the ethical concerns in practicing science (5 hrs)</td>
</tr>
<tr>
<td>CO4</td>
<td>Understand the Scope and role of statistics; methods and procedures of sampling; Construction of tables, charts and graphs (5 hrs)</td>
</tr>
<tr>
<td>CO5</td>
<td>Calculate central tendency and measures of dispersion and application of its knowledge on hypothesis testing as well as in problem solving (10 hrs)</td>
</tr>
<tr>
<td>CO6</td>
<td>Enumerate major biological databases and database search engines (8 hrs)</td>
</tr>
<tr>
<td>CO7</td>
<td>Perform DNA and protein sequence analysis, including sequence alignment and sequence similarity search using BLAST, FASTA, CLUSTAL W and CLUSTAL X (4 hrs)</td>
</tr>
<tr>
<td>CO8</td>
<td>Understand molecular phylogenetics and tools and methods for construction of phylogenetic trees (3 hrs)</td>
</tr>
<tr>
<td>CO9</td>
<td>Explain genome sequencing technologies, functional genomics, proteomic technologies and molecular docking and drug design (9 hrs)</td>
</tr>
</tbody>
</table>

Question paper pattern for external examination

[Module 1-3: Short answer 5x2=10 marks, Paragraph 2x5=10 marks, Essay 1x10= 10 marks
Module 4-5: Short answer 5x2=10 marks, Paragraph 2x5=10 marks, Essay 1x10=10 marks;
Module 6-9: Short answer 5x2=10 marks, Paragraph 4x5=20 marks, Essay 2x10 = 20 marks]

Section A: METHODOLOGY IN SCIENCE (15 hrs)

MODULE 1. Science, Scientific Studies and Methods (6 hrs)

Science and Scientific Studies
Science as a human activity; scientific attitude; Empiricism; Science disciplines; Interdisciplinary approach.

Scientific Methods
Major steps: Observation, Defining the problem, Collection of information, Formulation of a hypothesis, Experimentation, Analysis of the results and Conclusion based on interpretation of the results.

Methods in scientific enquiry: Inductive and deductive reasoning.
Hypothesis: Formulation of a hypothesis, different thought processes in developing hypothesis (analogy, induction, deduction and intuition), hypothetico-deductive model, testing hypothesis, auxiliary hypothesis, adhoc hypothesis.

Theories and laws in science; peer review; importance of models, simulations and virtual testing (brief account).

[Short answers/Paragraphs/Essays]
MODULE 2. Experimentation (4 hrs)
Types of experiments; design of an experiment: principles and procedures; necessity of units and dimensions; repeatability and replications; documentation of experiments; Planning of Experiments: design, selection of controls, observational and instrumental requirements; Test animals used in experiments.

[Short answers/Paragraphs/Essays]

MODULE 3. Ethics in Science and Animal Ethics (5 hrs)
Scientific information: Depositories of scientific information – primary, secondary and digital sources; Sharing of knowledge: transparency and honesty, Publications, Patents, Plagiarism.
Constitution of India Article 51A (g); Prevention of cruelty to animals Act of 1960 - Section 17.1(d), Committee for the purpose of control and supervision of experiments on animals (CPCSEA).

[Short answers/Paragraphs]

Section B: BIOSTATISTICS (15 Hrs)

MODULE 4. Introduction (5 hrs)
Definition; scope; role of statistics in life sciences; terminology and variables.
Sample and Sampling: Sample size, sampling errors, methods of sampling.
Collection/documentation of data of the experiments.
Classification of data; Presentation of data: Tabular, Graphical and Diagrammatic (histogram, frequency polygon and frequency curve; line diagram, bar diagram and pie diagram).

[Short answers/Paragraphs/Essays]

MODULE 5. Analysis and Interpretation of data (10 hrs)
Measures of central tendency: *(raw data, discrete series data, continuous series data- problems are to be discussed)*
a) Mean, b) Median and c) Mode.
Measures of Dispersion: *(raw data, discrete series data, continuous series data - problems to be discussed)*
a) Range, b) Mean deviation, c) Standard deviation, d) Standard error.
Hypothesis testing and Interpretation of results: *(problems to be discussed)*
a) 't' test, b) F- test - ANOVA
Significance of statistical tools in data interpretation; Statistics-based acceptance or rejection of hypothesis.

[Short answers/Paragraphs/Essays]

SECTION C: BIOINFORMATICS (24 hours)

MODULE 6. Introduction and Biological Databases (8 hrs)
Overview of bioinformatics, Scope and application of Bioinformatics.
Major Databases in Bioinformatics: Biological databases, Features of a good database. Classification format of biological databases.
Primary databases: Nucleotide sequence databases – Mention EMBL, DDBJ, Genbank; Protein sequence databases – Mention Swiss Prot, PIR, MIPS.

Structure databases: PDB, NDB.

Special databases – PROSITE, Pfam, CATH, OWL, PubMed.

Secondary databases: Mention PROSITE, PRINTS. Databases of patterns, motifs and profiles, EST databases, SNP databases.

Metabolite databases – Mention KEGG, EcoCyc.

Database Search Engines: Entrez at NCBI of USA, SRS at EBI of England, STAG at DDBJ of Japan. Data retrieval with Entrez and SRS.

Sequence submission to NCBI.

[Short answers/Paragraphs/Essays]

MODULE 7. Sequence Analysis (4 hrs)
Web based and standalone tools for DNA and protein sequence analysis. Types of sequence alignment, methods of sequence alignment. Sequence similarity search – pair wise and multiple sequence alignments; BLAST, FASTA, CLUSTAL W, CLUSTAL X.

[Short answers/Paragraphs]

MODULE 8. Molecular Phylogenetics (3 hrs)

[Short answer/Paragraphs]

MODULE 9. Genomics and Proteomics (9 hrs)
Genome sequencing technologies; Sanger capillary sequencing, Roche 454 (pyrosequencing), Illumina/Solexa, SOLiD System, Single molecule sequencing. Whole genome sequence assembly, annotation and analysis. Functional Genomics: Microarrays, SAGE, ESTs; Transcriptomics; Metabolomics. Metagenomics: Concept and applications.

Proteomics

Cheminformatics
Molecular docking and drug design; Structural Bioinformatics in drug discovery

[Short answers/Paragraphs/Essays]

Topics for seminar/assignment
(Topics allotted for assignments/ seminars should be considered for internal assessments only, and can be subdivided among students)
1. Findings that changed the course of science.
2. Prepare a table showing the height of 20 students in a class. Calculate the mean height.
3. What are the mathematical properties of SD? How is it a better measure of Dispersion than range? Calculate the arithmetic mean and the SD of the frequency distribution obtained from a sample of data.

5. Viral genome database (ICTVdb, VirGen).

REFERENCES

Module 1-3 (Methodology in Science)

Module 4-5 (Biostatistics)

Module 6-9 (Bioinformatics)
B. Sc. ZOOLOGY PROGRAMME
ZOOLOGY [CORE COURSE] PRACTICAL – II
Code: ZOL6B15P

[Practical II*A + Practical II*B] [4 Credits]

PRACTICAL II*A: CELL BIOLOGY, GENETICS, BIOTECHNOLOGY, MICROBIOLOGY AND IMMUNOLOGY [72 hours] [4 hrs/week]

PRACTICAL II*B: BIOCHEMISTRY, MOLECULAR BIOLOGY, METHODOLOGY IN SCIENCE, BIOSTATISTICS & BIOINFORMATICS [72 hours] [4 hrs/week]

COURSE OUTCOMES [COs]

<table>
<thead>
<tr>
<th>COs</th>
<th>Course Outcome Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Perform experiments in cell biology and genetics including demonstration of Barr body in buccal epithelial cells of man, polytene chromosome in the salivary glands of D. melanogaster larva, mitotic division in onion root tip cells, micrometry of microscopic objects, prepare whole mounts of microscopic objects, and calculate mitotic and metaphase index from slides.</td>
</tr>
<tr>
<td>CO2</td>
<td>Enumerate the inheritance of major human genetic traits, pedigree chart, normal and abnormal human karyotypes, phenotypic differences of male and female Drosophila and solve problems on Monohybrid, dihybrid crosses, blood groups and sex-linked inheritance.</td>
</tr>
<tr>
<td>CO3</td>
<td>Understand electrophoresis, PCR, Northern blotting, Southern blotting and Western blotting, DNA sequencing and fingerprinting and isolation of genomic DNA.</td>
</tr>
<tr>
<td>CO4</td>
<td>Perform gram staining and preparation of culture media for bacteria and demonstrate bacterial motility by standard laboratory protocols.</td>
</tr>
<tr>
<td>CO5</td>
<td>Understand the detection of human blood groups and organs of immune system</td>
</tr>
<tr>
<td>CO6</td>
<td>Perform standard biochemical tests for the detection of reducing and nonreducing sugars, polysaccharides, proteins and lipids.</td>
</tr>
<tr>
<td>CO7</td>
<td>Understand the staining of mitochondria, tissue homogenization and isolation of nuclei, effect of colchicines on cell division, extraction of DNA and polyacrylamide and agarose gel electrophoresis</td>
</tr>
<tr>
<td>CO8</td>
<td>Solve basic problems in biostatistics and Bioinformatics</td>
</tr>
</tbody>
</table>

FIFTH SEMESTER B. Sc. ZOOLOGY PROGRAMME

PRACTICAL II*A

CELL BIOLOGY, GENETICS, BIOTECHNOLOGY, MICROBIOLOGY & IMMUNOLOGY [72 hrs] [4 hrs/week]

Section A: Cell Biology

1. Study of diversity of eukaryotic cells – methylene blue staining of buccal epithelium and striated muscle cells (Minor).
2. Temporary mount of buccal epithelial cells to observe Barr body (Major).
5. Study of the polytene chromosome of Drosophila melanogaster using salivary gland cells of 3rd instar larva (Demonstration only).
6. Measurement of size of microscopic objects using ocular and stage micrometres
 (Major).
7. Tissues (permanent slides of epithelial tissues, smooth muscle, cartilage, bone).
8. Preparation of permanent whole mount (Demonstration).
9. Study of different stages of meiosis in grass hopper testes (Demonstration).
10. Vital staining of mitochondria using insect flight muscle/cheek epithelium/yeast (Minor)

Section B: Genetics

1. Scheme of Pedigree chart.
2. Study of inheritance of human traits: (use Pedigree charts). Blood groups, Eye
 colour.
3. Genetic problems on Monohybrid, dihybrid crosses; blood groups; sex-linked
 inheritance (minimum ten problems to be worked out).
4. Frequency of the following genetic traits in human: widow’s peak, attached ear
 lobe, dimple in chin, hypertrichosis, colour blindness, PTC tasting.
5. Study through photographs of the Karyotype: Down’s, Klinefelter’s, Turner’s
 and Edward’s Syndrome.
6. Study of phenotypic characters in male and female *Drosophila*

Section C: Biotechnology

1. Study of the principle and applications of Electrophoretic apparatus.
2. PCR-Principle and applications.
3. Study of transgenic animals.
4. Southern blotting (Principle and methodology - using flowcharts/diagrams/by
 visiting a diagnostic Lab)

Section D: Microbiology

1. Gram staining for the identification of Gram positive and Gram negative
 bacteria (*Lactobaciilius* and *Rhizobium*) (Major).
2. Bacterial motility by hanging-drop method (Demonstration).
3. Preparation of culture media for bacteria (Synthetic Media, Natural Media,
 Simple Media, Differential Media and Selective Media).
4. Methylene blue reduction test for assessing the quality of raw milk
 (Demonstration).
5. Preparation of a fungal smear – Lactophenol cotton blue staining & mounting
 (Minor)

Section E: Immunology

1. Identification of human blood groups (A B O and Rh).
2. Histological study of spleen, thymus and lymph nodes through slides/photographs.
3. ELISA (methodology of detection of biomolecules using flowcharts/diagrams/by
 visiting a diagnostic Lab)
4. Western blotting (methodology of detection of specific proteins using
 flowcharts/diagrams/by visiting a diagnostic Lab)
REFERENCES

PRACTICAL II*B

BIOCHEMISTRY, MOLECULAR BIOLOGY, METHODOLOGY IN SCIENCE, BIOSTATISTICS & BIOINFORMATICS

[(72 hrs) (4 hrs/week)]

Section A: Biochemistry

1. Detection of organic constituents (carbohydrates, proteins and lipids only) from sample solutions (Major)
 a) Detection of reducing sugar: Glucose/ Fructose/ Maltose [Fehling’s test, Benedict’s test, Moore’s test, cupric sulphate test, rapid furfural test (any three) (Major).
 b) Detection of monosaccharides [Barfoed’s test]
 c) Detection of non-reducing sugars: Sucrose [Hydrolysis test].
 d) Identification of functional groups of carbohydrates [Selivanoff’s test]
 e) Detection of polysaccharides: Starch [Lugol’s iodine test, confirmatory heating & cooling test].
 f) Detection of proteins: [Biuret test, Nitric acid test, Xanthoproteic test].
 g) Detection of lipids: [Sudan III or IV test, Spot test].
2. Preparation of Normal, molar and standard solutions and serial dilutions.
3. Separation of amino acids (or any other compounds) from a mixture by using paper chromatography (Demonstration).
4. Determination of concentration of unknown solutions using Photo electric colorimeter (Demonstration).

Section B: Molecular Biology (Any four items)

1. Cell fractionation and isolation of nucleus (demonstration).
2. Study of the effects of Colchicine on mitosis in the root meristem of *Allium cepa*.
3. Differential staining for DNA and RNA in human cheek epithelial cells (demonstration).
4. Poly acrylamide gel electrophoresis (Demonstration).
5. Agarose gel electrophoresis (Demonstration).
6. Isolation of DNA from animal tissues (Demonstration)
7. Isolation of RNA from animal tissues (Demonstration)

Section C: Methodology in Science, Biostatistics and Bioinformatics
(Any 10 items of the following)

1. Design an experiment to prove a hypothesis by testing the specificity of the enzyme salivary amylase on starch.
2. Measure the size of given leaves / any sample of data and calculate the mean, median and mode (raw data, discrete series & continuous series).
3. Measure the size of given shells / any sample of data and represent it in a graphical form and interpret it.
4. Calculate the standard deviation of the given set of data (raw data, discrete series & continuous series). Enter the data in Excel, calculate SD and record the screen shots of steps and results.
5. Census the avian fauna / any fauna of two different areas and present the data in a suitable graphical form. Compare by t-test.
6. Construct a frequency curve with mean ± SD using suitable data. Draw the same in Excel or using any free software and record it.
7. Prepare a frequency polygon with mean ± SD utilizing appropriate data.
8. Draw a bar diagram with mean ± SD employing suitable data.
9. Construct a histogram with mean ± SD utilizing suitable data. Do the same with software
10. Draw a pie diagram using suitable data. Draw the same in Excel or using any free software.
11. Formulate a hypothesis of any scientific observation made by you.
12. Sequence retrieval from databases (demonstration).
13. Sequence similarity search using BLAST.
14. Multiple sequence alignment.
15. Construction of phylogenetic tree (Demonstration).
16. Docking studies (Demonstration).

REFERENCES

FIFTH SEMESTER B. Sc. ZOOLOGY PROGRAMME

ZOLOGY OPEN COURSE-I (Theory)

REPRODUCTIVE HEALTH AND SEX EDUCATION

Code: ZOL5D01T

[54 hours] [3 hours per week] [3 credits]

COURSE OUTCOMES [COs]

<table>
<thead>
<tr>
<th>COs</th>
<th>Course Outcome Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Understand the reproductive health, and importance of sex education for teen and youth. (2 hrs)</td>
</tr>
<tr>
<td>CO2</td>
<td>Explain the chromosomal mechanism of sex determination and sex chromosomal anomalies. (3 hrs)</td>
</tr>
<tr>
<td>CO3</td>
<td>Describe the structural and functional features of human reproductive system, fertilization, implantation, pregnancy, gestation, placenta, parturition and lactation. (17 hrs)</td>
</tr>
<tr>
<td>CO4</td>
<td>Explain the scope of reproductive technologies in infertility management and the assisted reproductive techniques. (10 hrs)</td>
</tr>
<tr>
<td>CO5</td>
<td>Understand the different methods of prenatal diagnosis and associated ethical issues (4 hrs)</td>
</tr>
<tr>
<td>CO6</td>
<td>Describe the different methods of fertility control. (4 hrs)</td>
</tr>
<tr>
<td>CO7</td>
<td>Understand the symptoms, mode of transmission, diagnosis and treatment of different sexually transmitted diseases and their socio economic dimensions. (7 hrs)</td>
</tr>
<tr>
<td>CO8</td>
<td>Describe sexual orientation, sexual abuse and myths (5 hrs)</td>
</tr>
<tr>
<td>CO9</td>
<td>Understand the ethical aspects of sex (2 hrs)</td>
</tr>
</tbody>
</table>

Question paper pattern for external examination

[Module 1-3: Short answer 4x2 = 8 marks; Paragraph 3x5=15 marks; Essay 1x10 = 10 marks
Module 4-6: Short answer 3x2 = 6 marks; Paragraph 2x5=10 marks; Essay 1x10 = 10 marks
Module 7-9: Short answer 5x2 =10 marks; Paragraph 2x5=10 marks.]

MODULE 1. Introduction (2 hrs)
Definition; Reproductive health - problems and strategies; reproductive rights; importance of sex education for teen and youth.
[Short answers/Paragraphs]

MODULE 2. Sex determination and Chromosomal anomalies (3 hrs)
Chromosomal mechanism of sex determination; Barr body; twin studies; sex reversal; Sex chromosomal anomalies: Turner’s syndrome and Klinefilter’s syndrome.
[Short answers/Paragraphs]

MODULE 3. Human Reproduction (17 hrs)
Male reproductive system: Structure of testis, male accessory organs; Semen production and composition; ejaculation. Spermatogenesis.
Female reproductive system: Structure of human ovary; development of primary follicle; structure of graafian follicle; fallopian tubes; uterus; external genitalia; mammary glands. Oogenesis.
Menstrual cycle and hormonal control; brief account of fertilization, implantation, pregnancy, gestation, placenta, parturition and lactation (Brief account on hormonal control of lactation).
[Short answers/Paragraphs/Essays]
MODULE 4. Infertility and Assisted reproductive technologies (10 hrs)

[Short answers/Paragraphs/Essays]

MODULE 5. Prenatal Diagnosis (4 hrs)

[Short answers/Paragraphs]

MODULE 6. Fertility Control (4 hrs)
Natural methods; artificial methods; chemical methods; hormonal methods; contraceptive devices; surgical contraception; abortion, legal termination of pregnancy.

[Short answers/Paragraphs/Essays]

MODULE 7. Sexually transmitted infectious diseases (7 hrs)
Symptoms, mode of transmission, diagnosis, treatment and prophylaxis of AIDS, syphilis, gonorrhea, herpes (genital), human papilloma virus and genital warts, hepatitis, gonococcal vulvo vaginitis, Trichomonal vaginitis. Mention the term venereal disease. Socio economic dimensions of STD.

[Short answers/Paragraphs/Essays]

MODULE 8. Sexual orientation, sexual abuse and myths (5 hrs)
Homosexuality and bisexuality (mention LGBT), oral sex, animal sex, cyber sex, sexual abuse, premarital and extramarital sex, sexual perversions, paraphilia, child abuse, prostitution, sexual hygiene, protection of children from sexual offences (POCSO) Act, 2012 (brief account only), sexual myths.

[Short answers/Paragraphs]

MODULE 9. Ethical aspects of sex (2 hrs)
Healthy relationship with opposite sex, role of counseling, gender discrimination in family and society.

[Short answers/Paragraphs]

Topics for Assignments/Seminars
(Topics allotted for assignments/seminars should be considered for internal assessments only, and can be subdivided among students)
1. Sexual counseling
2. Marriage counseling
3. Population explosion and birth control
4. Functions of male and female hormones
5. Hormones of pregnancy
REFERENCES

FIFTH SEMESTER B. Sc. ZOOLOGY PROGRAMME

ZOOLOGY OPEN COURSE- II (Theory)

NUTRITION, HEALTH AND HYGIENE

Code: ZOL5D02T

[54 hours] [3 hours per week] [3 credits]

COURSE OUTCOMES [COs]

<table>
<thead>
<tr>
<th>COs</th>
<th>Course Outcome Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Describe the basic concepts in nutrition (3 hrs)</td>
</tr>
<tr>
<td>CO2</td>
<td>Demonstrate the understanding of nutrients and energetics (19 hrs)</td>
</tr>
<tr>
<td>CO3</td>
<td>Enumerate the vitamins and minerals and their roles in human nutrition (5 hrs)</td>
</tr>
<tr>
<td>CO4</td>
<td>Explain balanced diet, RDA and factors that affect it and meal planning for various categories of people (4 hrs)</td>
</tr>
<tr>
<td>CO5</td>
<td>Illustrate diet therapy and dietary management of various conditions (3 hrs)</td>
</tr>
<tr>
<td>CO6</td>
<td>Explain health, fitness and hygiene (5 hrs)</td>
</tr>
<tr>
<td>CO7</td>
<td>Describe the major communicable, non-communicable, congenital and sexually transmitted human diseases (11 hrs)</td>
</tr>
<tr>
<td>CO8</td>
<td>Perform first aid management in emergency situations (4 hrs)</td>
</tr>
</tbody>
</table>

Question paper pattern for external examination

[Module 1-5: Short answer 7x2=14 marks, Paragraph 5x5=25 marks; Essay 1x10=10 marks
Module 6-8: Short answer 5x2=10 marks, Paragraph 2x5=10 marks, Essay 1x10=10 marks]

Section A: NUTRITION (34 hours)

MODULE 1. Key concepts in Nutrition (3 hrs)

Factors Influencing Food Selection: Flavor, Demographics, Culture and Religion, Social and Emotional Influences, Health, Environmental Concerns, Food industry and media (short notes only)

Nutrients and non-nutrients: Six classes of nutrients: Carbohydrates, Fats, Protein, Vitamins, Minerals, Water; functions of these nutrients. Mention essential nutrients.

[Short answers/Paragraphs]

MODULE 2. Nutrition and Energetics (19 hrs)

Digestion, Absorption and Metabolism (14 hrs)

Classification, Sources and nutritional significance of carbohydrates, proteins and fats. Gastrointestinal tract, digestion and absorption of carbohydrates, proteins and fats. Mention dietary fibers, essential and non essential amino acids, saturated, unsaturated and essential fatty acids. Deficiency of Protein — Protein energy malnutrition (PEM), Kwashiorkor, Marasmus.

[Short answers/Paragraphs/Essays]

Energy Metabolism (5 hrs)

Energy value of macronutrients, factors affecting the caloric value of foods, PFV (Physiological Fuel Value) of foods, low calorie modifications, Bomb calorimeter, Basal metabolic rate (BMR), factors affecting BMR; Thermic effect of food and thermogenesis. Energy balance and Body mass index (BMI).

[Short answers/Paragraphs/Essays]
MODULE 3: Vitamins and Minerals (5 hrs)

Vitamins (4 hrs)
Fat soluble — A, D, E, K.; Water soluble vitamins — B Complex — Thiamine, Riboflavin, Niacin, Pantothenic Acid, Folic Acid, Vitamin B 12, Biotin and Pyridoxine, Vitamin C. Sources and effects of deficiency.

Macro and Micro Minerals (1 hr)
Physiological functions, sources and deficiency: Calcium, Phosphorous, Iron and Iodine.

[Short answers/Paragraphs/Essays]

MODULE 4. Meal Planning (4 hrs)
Characteristics of a nutritious Diet: Adequate, Balanced, Moderate and Varied diet. Nutrient requirement and meal planning for adults; changes in nutrient requirement according to sex, age & activity. RDA (recommended dietary allowance), Factors affecting RDA. Special nutritional requirements and conditions: Pregnancy, lactation and weaning.

[Short answers/Paragraphs]

MODULE 5. Clinical Dietetics (3 hrs)
Therapeutic modification of normal diet. Etiology, symptoms and dietary management in peptic ulcer, diarrhoea, obesity, hypertension, diabetes mellitus, nephritis, cirrhosis of liver and lactose intolerance.

[Short answers/Paragraphs]

Section B: HEALTH AND HYGIENE (20 hours)

MODULE 6. Health and Hygiene (5 hrs)

[Short answers/Paragraphs]

MODULE 7. Human Diseases (11 hrs)
Communicable diseases: Bacterial (Cholera and Typhoid), Viral (Measles and Poliomyelitis), Fungal (Candidiasis), Protozoan (Amoebiasis and Malaria), Helminth (Ascariasis and Taeniasis).
Non-Communicable diseases: Blood pressure (Hypertension and Hypotension); Cerebral haemorrhage and stroke; Coronary thrombosis, Atherosclerosis and Arteriosclerosis; Diabetes: Type I and Type II; Cancer: Thyroid and Breast cancer; Congenital diseases: Autism, Dyslexia, Down and Foetal alcoholic Syndrome; Sexually transmitted diseases (STD): Syphilis and Gonorrhea
Vectors and diseases: Anopheles, Aedes, Culex and Xenopsylla

[Short answers/Paragraphs/Essays]
MODULE 8. First Aid Management in Emergency Situation (4 hrs)

Dog bite; Insect sting: scorpion, Bee and wasp; Snake bite: venomous and Non-nenomous snakes; Haemotoxic Venom and Neurotoxic Venom; Antivenom and Polyvalent snake antivenom; First aid for Road accidents and drowning; Risks of self-medication practices

[Short answers/Paragraphs]

Topics for Assignments/Seminars
(Topics allotted for assignments/ seminars should be considered for internal assessments only, and can be subdivided among students)

1. Non-nutritive components of food: food additives and preservatives.
2. Tobacco abuse.
3. Drugs and narcotics abuse.
4. Hepatitis and sub types A, B & C.
5. Nutrition in outer space.
6. Integrated Child Development Services (ICDS).
7. Mid-Day Meal Scheme (MDMS).
8. Special Nutrition Programme.

REFERENCES

FIFTH SEMESTER B. Sc. ZOOLOGY PROGRAMME

ZOOLOGY OPEN COURSE- III (Theory)

APPLIED ZOOLOGY
Code: ZOL5D03T
[54 hours] [3 hours per week] [3 credits]

COURSE OUTCOMES [COs]

<table>
<thead>
<tr>
<th>COs</th>
<th>Course Outcome Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>List and describe the pests and vectors, their habits, damages and control measures and mechanisms of insect pest management. (18 hrs)</td>
</tr>
<tr>
<td>CO2</td>
<td>Develop personal, academic, employability and self-management skills in apiculture, lac-culture, sericulture and vermiculture (11 hrs)</td>
</tr>
<tr>
<td>CO3</td>
<td>Demonstrate an understanding of the various strategies in pisciculture, prawn culture, mussel culture and pearl culture (4 hrs)</td>
</tr>
<tr>
<td>CO4</td>
<td>Recognize the significance of poultry farming and its economic implications in rural India (6 hrs)</td>
</tr>
<tr>
<td>CO5</td>
<td>Reviews Indian breeds of cattle and goats and the strategies in their breeding (6 hrs)</td>
</tr>
<tr>
<td>CO6</td>
<td>Recognize the significance of parasitic mode of life and their implications in human health (9 hrs)</td>
</tr>
</tbody>
</table>

Question paper pattern for external examination

[Module 1: Short answer 3x2=6 marks, Paragraph 2x5=10 marks, essay 1x10=10 marks; Module 2: Short answer 1x2=2 marks, Paragraph 1x5=5 marks, essay 1x10=10 marks; Module 3-6: Short answer 8x2=16 marks, Paragraph 4x5=20 marks]

MODULE 1. Vectors and Pests (18 hrs)

Insect Pests (8 hrs)
Definition of pest and Types of pests. Nature of damage caused and control measures of the following pests:
(a) Pests of paddy: Spodoptera mauritia (Rice swarming caterpillar), Leptocorisa acuta (Rice bug); (b). Pests of coconut: Oryctes rhinoceros (Rhinoceros beetle), Rhynchophorus ferrugineus (Red palm weevil); (c). Pests of stored products: Sitophilus oryzae (Rice weevil), Callasobruchus chinensis (Pulse beetle); Termites.

[Short answers/Paragraphs/Essays]

Insect Pest Management (5 hrs)
Principles of Cultural control, Mechanical controls, Biological control, Chemical control, Integrated pest management (IPM)

[Short answers/Paragraphs/Essays]

Vectors of Human Diseases (5 hrs)
Mention habits, disease caused and control measures of the following

[Short answers/Paragraphs]

MODULE 2. Animal Breeding and Animal Cultures (11 hrs)

(a) Apiculture: Brief description of adaptations of social bees used for honey harvesting – mention Apis dorsata, Apis cerana, Apis florea, and Tetragonula iridipennis; Bee keeping equipments and methods; Honey bee products: bee wax
and its uses, chemical composition of honey and uses; Bee pollination, Economics of bee keeping.

(b). Sericulture: Brief description of *Bombyx mori* (Mulberry silk moth); Silkworm rearing and extraction of silk, Economics of sericulture; Types of silk: Tassar, Muga and Eri silk.

(c). Lac-culture: History, Morphology of lac insect, host plants, Natural infection, Artificial infection (inoculation), methods in lac-culture and economics of lac products.

[Short answers/Paragraphs/Essays]

MODULE 3: Aquaculture (4hrs)
Brief account on Pisciculture, Prawn culture, Mussel culture, Pearl culture and ornamental fish culture (with examples).

[Short answers/Paragraphs]

MODULE 4: Poultry Farming (6 hrs)

[Short answers/Paragraphs]

MODULE 5: Animal Husbandry (6 hrs)
Introduction, Exotic and Indian breeds of Cattle and Goats, Artifical insemination, Storage of semen, Embryo transfer technology, Short notes of common diseases: Anthrax, Foot and mouth diseases, Rinderpest, Brucellosis, Peste des Petits Ruminants (PPR).

[Short answers/Paragraphs]

MODULE 6: Parasitology (9 hrs)
Introduction – Commensalism, Phoresis, Parasitism, Symbiosis, Host-parasite Relationship, Physiology, immunology and biochemistry of parasitism, Mention Definitive host, Intermediate host, Reservoir and Zoonosis.

Human Parasites: Mention the habits, habitat, life cycle, mode of infection, control measures of the following parasites: *Entamoeba hystolytica*, *Giardia lamblia*, *Leishmania donovani*, *Plasmodium vivax*, *Taenia solium* and *Wuchereria bancrofti*.

[Short answers/Paragraphs]

Topics for Assignments /Seminars
(Topics allotted for assignments/ seminars should be considered for internal assessments only, and can be subdivided among students)
1. Genetic engineering applications in Animal Breeding
2. Mosquitoes and their Control
3. Fire Ants
4. National Project for Cattle and Buffalo Breeding
REFERENCES

- The Complete Book on Beekeeping and Honey Processing (2nd Revised Edition), ISBN: 978-8190568555, NIIR project consultancy services, 544 pages
SIXTH SEMESTER B.Sc. ZOOLOGY PROGRAMME

Physiology and Endocrinology

Code: ZOL6B10T

[54 hrs] [3 hours per week] [3 credits]

COURSE OUTCOMES [COs]

<table>
<thead>
<tr>
<th>COs</th>
<th>Course Outcomes Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Describe the regulation of digestion in man, nutrition in pregnancy and infancy, nutritional disorders, balanced diet, starvation, fasting and obesity. (5 hrs)</td>
</tr>
<tr>
<td>CO2</td>
<td>Understand the mechanism of transport and exchange of respiratory gases and its neurophysiological control and physiological problems in diving mammals, new-born and aged individuals. (6 hrs)</td>
</tr>
<tr>
<td>CO3</td>
<td>Describe functions, composition, coagulation, transfusion, agglutination and clinical analysis of blood, haemoglobinopathies, types of heart and common cardio-vascular problems. (6 hrs)</td>
</tr>
<tr>
<td>CO4</td>
<td>Understand the osmoregulatory mechanisms in animals; excretion and its hormonal control and common renal disorders in man. (6 hrs)</td>
</tr>
<tr>
<td>CO5</td>
<td>Explain the ultrastructure of skeletal muscles and biochemical events and energetics of muscle contraction. (5 hrs)</td>
</tr>
<tr>
<td>CO6</td>
<td>Understand the different types of nerve cells, glial cells and nerve fibres, and the mechanism of nerve impulse transmission (6 hrs)</td>
</tr>
<tr>
<td>CO7</td>
<td>Understand the types, physiology and significance of bioluminescence, and the structure and functions of electric organs. (2 hrs)</td>
</tr>
<tr>
<td>CO8</td>
<td>Describe invertebrate neuro-endocrine organs and hormones, vertebrate endocrine glands, their hormones and functions (12 hrs)</td>
</tr>
<tr>
<td>CO9</td>
<td>Understand the concept of neurosecretion and the mode of action of peptide and steroid hormones. (6 hrs)</td>
</tr>
</tbody>
</table>

Question paper pattern for external examination

Module 1-7: Short answer 7x2 =14 marks; Paragraph 4x5 =20 marks; Essay 2x10 =20 marks
Module 8-9: Short answer 5x2 =10 marks; Paragraph 3x5 =15 marks.

Section A: PHYSIOLOGY (36 hours)

MODULE 1. Nutrition (5 hrs)
Regulation of digestive activity: Nervous and hormonal control; Ruminant digestion; Nutrition in pregnancy, infant nutrition, breast feeding, composition of breast milk; Importance of dietary fibres; Balanced diet; Nutritional disorders: anorexia, acidity, ulcer, flatulence; starvation, fasting and its significance; Obesity: causes and consequences.

[Short answers/Paragraphs]

MODULE 2. Respiration (6 hrs)
Gaseous exchange and transport of respiratory gases (brief account), Oxygen-Haemoglobin dissociation curve; Respiratory pigments, structure and properties of Hb; Neurophysiological control of respiration; Physiological problems in diving mammals, new-born and aged individuals.

[Short answers/Paragraphs/Essays]

MODULE 3. Circulation (6 hrs)
Blood: functions and composition; Coagulation of blood (Enzyme cascade theory); Clinical analysis of blood, ESR; Haemodynamics; Haemostasis, haemolysis and
jaundice, haemoglobinopathies; Blood transfusion and agglutination, aphaeresis.
Types of heart; ECG; Common cardio-vascular problems: Abnormal variations in BP, Tachycardia, Bradycardia, Myocardial infarction, heart failure, cerebral hemorrhage and cerebro-vascular accident.

[Short answers/Paragraphs/Essays]

MODULE 4. Osmoregulation and Excretion (6 hrs)
Osmoconformers and osmoregulators; Water conservation in desert forms; Osmotic and ionic regulation in terrestrial, fresh water and marine animals; Types of excretion, urea cycle; Human kidney: Urine formation with counter-current mechanism and hormonal regulation; Common renal disorders: haematuria, uremia, proteinuria, renal hypertension, nephritis, renal calculi, oedema, acidosis and alkalosis; Dialysis.

[Short answers/Paragraphs/Essays]

MODULE 5. Muscle Physiology (5 hrs)
Structure of vertebrate skeletal muscle: EM structure of Myofibrils and Myofilaments, contractile proteins; Mechanism of muscle contraction: Ultra structural changes (sliding filament theory); physiology, biochemistry and energetics of muscle contraction; energy sources, role of creatine phosphate, cori cycle; Muscle twitch, fatigue, tetany and rigor mortis.

[Short answers/Paragraphs/Essays]

MODULE 6. Nerve Physiology (6 hrs)
Different types of nerve cells; glial cells, giant nerve fibre of crustaceans and cephalopods; regeneration of medullary fibres, neurotrophins; Nerve impulse transmission, synapses and neuromuscular junctions, synaptic transmission (electrical and chemical), neurotransmitters.

[Short answers/Paragraphs/Essays]

MODULE 7. Bioluminescence and Bioelectricity (2 hrs)
Classification of bioluminescence: symbiotic, extracellular and intracellular; Physiology and significance of light production; Structure and functions of electric organs.

[Short answers/Paragraphs/Essays]

Section B: ENDOCRINOLOGY (18 hrs)

MODULE 8. Invertebrate and Vertebrate endocrinology (12 hrs)
Neuro- endocrine organs and hormones in crustaceans and insects.
Classification of hormones: Amine, peptide and steroid hormones; Endocrine glands in man (hypothalamus, pituitary, thyroid, parathyroid, pancreas, adrenal, thymus, pineal and gastro-intestinal): their hormones and functions (brief account); Hormonal disorders.
Hormones of reproduction: Testes, ovaries and placenta, their hormones and physiological effects; role of hormones in female sexual cycle; hormone related female and male sexual dysfunctions.

[Short answers/Paragraphs]
MODULE 9. Concept of neurosecretion and hormonal action (6 hrs)

Hormonal action: Hormone receptors; Mechanism of action of peptide and steroid hormones; mode of action of insulin and thyroxine; positive and negative feedback regulation.

[Short answers/Paragraphs]

Topics for assignments/seminars

(Topics allotted for assignments/ seminars should be considered for internal assessments only, and can be subdivided among students)

1. History, aim, scope and branches of Physiology.
2. Absorption of carbohydrates, proteins, and lipids.
3. Conducting system of the heart.
4. Composition and functions of lymph.
5. Gross and micro structure of human kidney.

REFERENCES

SIXTH SEMESTER B.Sc. ZOOLOGY PROGRAMME

ZOOLOGY CORE COURSE – X [Theory]

REPRODUCTIVE AND DEVELOPMENTAL BIOLOGY

Code: ZOL6B11T
[54 hrs] [3 hours per week] [3 credits]

COURSE OUTCOMES [COs]

<table>
<thead>
<tr>
<th>COs</th>
<th>Course Outcome statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Explain the reproductive strategies in invertebrates and vertebrates and structural and functional features of human reproductive system (6 hrs)</td>
</tr>
<tr>
<td>CO2</td>
<td>Describe the process of fertilization, pregnancy, gestation, placentation, parturition and lactation in humans. (3 hrs)</td>
</tr>
<tr>
<td>CO3</td>
<td>Explain the scope of reproductive technologies in infertility management; prenatal diagnostic techniques and methods of fertility control (5 hrs)</td>
</tr>
<tr>
<td>CO4</td>
<td>Understand the phases and theories of development, and classification of eggs (3 hrs)</td>
</tr>
<tr>
<td>CO5</td>
<td>Enumerate the types of cleavage, arrangement of blastomeres, germ layers and their derivatives, cell lineage in Planocera and different types of blastula. (3 hrs)</td>
</tr>
<tr>
<td>CO6</td>
<td>Illustrate the early developmental process of egg in Amphioxus, frog, chick, and man (22 hrs)</td>
</tr>
<tr>
<td>CO7</td>
<td>Explain the basics of cell differentiation and its genetic control, stem cells and applications of stem cell technology (3 hrs)</td>
</tr>
<tr>
<td>CO8</td>
<td>Describe parthenogenesis, types, and significance (2 hrs)</td>
</tr>
<tr>
<td>CO9</td>
<td>Explain the function map construction, Spemann’s constriction experiments on amphibian embryos, organizers in development, embryonic induction, gradient experiments in sea urchin eggs, cloning experiments in sheep and teratogenesis (7 hrs)</td>
</tr>
</tbody>
</table>

Question paper pattern for external examination

Module 1-3: Short answer 2x2 = 4 marks; Paragraph 3x5 = 15 marks.
Module 4-9: Short answer 10x2 = 20 marks; Paragraph 4x5 = 20 marks; Essay 2x10 = 20 marks

SECTION A: REPRODUCTIVE BIOLOGY (14 hrs)

MODULE 1. Introduction and Human Reproductive system (6 hrs)

Introduction to Reproductive Biology (1 hr)

Importance and scope. Reproductive strategies in invertebrates and vertebrates; semelparity and iteroparity. Sex patterns; Mention sex reversal with examples.

[Short answers/Paragraphs]

Human Reproductive system (5 hrs)

[Short answers/Paragraphs]

MODULE 2. Fertilization, Pregnancy, Gestation, Placentation, parturition and lactation (3 hrs)

Fertilization: Fertilizin and anti-fertilizin, capacitation, agglutination, sperm penetration, activation of egg and amphimixis. Physiological and biochemical
changes during and after fertilization. Pregnancy, Gestation, Placentation, parturition and lactation.

[Short answers/Paragraphs]

MODULE 3. Reproductive technologies (5 hrs)

Reproductive technologies (3 hrs)

Infertility and its management: Brief account of semen collection, preservation, storage, artificial insemination, surrogacy.

Cryopreservation and embryo transfer: Collection, care and preservation of embryos; in vitro fertilization and embryo transfer: major steps; Test tube babies.

Assisted Reproductive Techniques (ART): GIFT, ZIFT, ICSI, oocyte donation and embryo donation.

Prenatal Diagnosis (1 hr)

Different Prenatal Diagnostic techniques (invasive and non-invasive); Prevention of Female foeticide - ethical issues and laws (Mention–PNDT Act).

Fertility control (1 hr)

Natural methods, artificial methods, chemical methods, hormonal methods, surgical contraception, removal of gonads and uterus; abortion.

[Short answers/Paragraphs]

SECTION B: DEVELOPMENTAL BIOLOGY (40 hrs)

MODULE 4. Introduction and Types of eggs (3 hrs)

Introduction to Embryology (1 hr)

Historical Perspective (brief account): Mention phases in development. Theories: preformation, epigenesis, recapitulation and germplasm theory.

Types of eggs (2 hrs)

Classification of eggs with examples based on: Amount of yolk (micro, meso & macrolecithal); Distribution of yolk (iso, centro and telolecithal); Presence or absence of shell (cleidoic & non cleidoic); Types of development (determinate and indeterminate).

Egg membranes: primary, secondary and tertiary; functions of egg envelopes.

[Short answers/Paragraphs/Essays]

MODULE 5. Cleavage and cell lineage (3 hrs)

Types of cleavage with examples based on: Plane of cleavage (Meridional, Vertical, Equatorial and Latitudinal); Amount of yolk (Holoblastic and Meroblastic); Types of development (Determinate and Indeterminate); Pattern of arrangement of blastomeres (Radial and Spiral).

Germ layers and derivatives. Cell lineage studies in Planocera (brief account only). Different types of blastula.

[Short answers/Paragraphs]

MODULE 6. Development of Amphioxus, frog, chick and man (22 hrs)

Early development of Amphioxus (3 hrs)

Brief account of fertilization. Cleavage, Blastulation, Gastrulation and Neurulation.
Development of Frog

Fertilization, Cleavage, Blastulation and fate map, Gastrulation (Morphogenetic movements) and formation of germ layers, neurulation and notochord formation, mesoderm and coelom formation; organogeny of brain and eye. Hormonal control of amphibian metamorphosis.

Development of Chick

Structure of egg; fertilization, cleavage, blastulation, gastrulation and formation of germ layers. Salient features of chick embryo at primitive streak stage, 24, 33 and 48 hours stages. Development and functions of extra embryonic membranes.

Development of Man

Cleavage and formation of morula, development of blastocyst, implantation, gastrulation up to the formation of germ layers. Human placenta; functions of placenta.

[Short answers/Paragraph/Essays]

MODULE 7. Cell Differentiation and Gene action during development (3 hrs)

Cell differentiation, totipotency, pluripotency, dedifferentiation and redifferentiation. Controlled gene expression during development; Homeotic genes, Mention Hox genes. Stem cells – embryonic and adult stem cells; their significance and applications.

[Short answers/Paragraphs]

MODULE 8. Parthenogenesis (2 hrs)

[Short answers/Paragraphs]

MODULE 9. Experimental Embryology & Teratology (7 Hrs)

Experimental Embryology

Teratology

Environmental disruption in animal development: Teratogenic agents and their effects (alcohol, drugs, nicotine and other chemicals), infections (Herpes virus, Cytomegalovirus and Rubella virus), metabolic imbalance (malnutrition and autoimmunization) (brief account).

[Short answer/Paragraphs]
Topics for assignments/seminars
(Topics allotted for assignments/ seminars should be considered for internal assessments only, and can be subdivided among students)

1. Development of foetal membranes in man.
2. Types of placenta (brief account).
3. Regeneration in animals.
4. Factors affecting regeneration.
5. Factors inducing parthenogenesis.
6. Structure of different types of eggs (Amphioxus, frog, insect)

REFERENCES

- Patten, B.M. (1973): Early Embryology of the Chick, TMH.
<table>
<thead>
<tr>
<th>COs</th>
<th>Course outcome statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Explain the structure of ecosystem and its functioning through energy flow and nutrient cycling (6 hrs).</td>
</tr>
<tr>
<td>CO2</td>
<td>Enumerate biogeochemical cycles and understand the concept of limiting factors (5 hrs).</td>
</tr>
<tr>
<td>CO3</td>
<td>Describe the ecology of population, community and habitat as a self regulating system (14 hrs).</td>
</tr>
<tr>
<td>CO4</td>
<td>Understand various types of population interactions and appraise the co-evolution (3 hrs).</td>
</tr>
<tr>
<td>CO5</td>
<td>Comprehend the diverse environmental and sustainability challenges ranging from local to global and the establishment of perfect harmony between economic development, social issues and environmental conservation (4 hrs).</td>
</tr>
<tr>
<td>CO6</td>
<td>Enumerate the several tools and techniques employed for studies on populations, communities and ecosystems. (4 hrs).</td>
</tr>
<tr>
<td>CO7</td>
<td>Understand the threats to biodiversity, and strategies adapted for the conservation of diversity of organisms (10 hrs).</td>
</tr>
<tr>
<td>CO8</td>
<td>Describe the various international strategies for conserving biodiversity (4 hrs).</td>
</tr>
<tr>
<td>CO9</td>
<td>Describe the toxic chemicals, their toxicity levels and the health hazards caused by them (4 hrs).</td>
</tr>
</tbody>
</table>

Question paper pattern for external examination

[Module 1-6: Short answer 9x2=18 marks, Paragraph 5x5=25 marks, Essay 1x10= 10 marks]
[Module 7-9: Short answer 3x2= 6 marks, Paragraph 2x5=10 marks, Essay 1x10=10 marks]

Section A: ENVIRONMENTAL BIOLOGY (36 hrs)

MODULE 1. Introduction, Ecosystem and Energetics (6 hrs)

Introduction to Environmental biology: Definition, divisions of ecology, modern branches and scope.

Ecosystem-Structure and functions: Concept of ecosystem, characteristics; Structure (components) of ecosystem (pond as an example); Mention kinds of ecosystems.

Ecosystem Energetics: Photosynthetic production and energy fixation; Energy flow in the ecosystem, Energy flow and laws of thermodynamics, Energy transfer and energy transformations [Trophic dynamics or community dynamics (Lindeman’s model of energy flow)]; Ecological efficiency.

Productivity of ecosystem: Concept of productivity- standing crops, material removed and production rate; Kinds of productivity: a) Primary productivity (GPP, NPP, NCP) b) Secondary productivity).

[Short answer/Paragraph/Essays]

MODULE 2. Biogeochemical Cycles and Limiting factors (5 hrs)

Biogeochemical Cycles: Basic types of biogeochemical cycles: Gaseous cycles (Carbon and nitrogen cycles) Sedimentary cycle (Phosphorous cycle).

Limiting factors: Basic concepts. Leibig’s law of minimum; Shelford’s law of tolerance and combined concept of limiting factors. Ecological indicators.

[Short answer/Paragraph/Essays]
MODULE 3. Population, Community and Habitat Ecology (14 hrs)

Population Ecology

Community Ecology
Biotic community: Definition and kinds of communities.
Characteristics: Species diversity, abundance, dominance, stratification, succession, growth forms, trophic structure, co-existence, interdependence and key stone species; Concept of ecotype, ecotone and edge effect.

Habitat ecology
b) Fresh water ecology: Lentic and lotic habitats, their characteristics, faunal characteristics and adaptations.
c) Terrestrial ecology: Tropical wet evergreen forests and Tropical dry deciduous forests, their characteristics, adaptations of animals of forests.

[Short answer/Paragraph/Essays]

MODULE 4. Population Interactions (3 hrs)
a) Intraspecific interactions b) Inter specific interactions: Positive interactions- Mutualism, Commensalism and Proto-cooperation (with examples). Negative interactions- Competition, Predation and Parasitism (with examples).

[Short answer/Paragraph/Essays]

MODULE 5. Social issues and Environment (4 hrs)
Sustainable development; Joint Forest Management; Goals of United Nations; Environmental ethics: Issues and possible solutions, Habitat destruction and its consequences- socio-ecological concern: wetland, paddy fields, mangrove, river encroachment, sand and clay mining; Ecological impacts of tourism.
Disaster management: Natural & Artificial - floods, drought, earthquake, cyclone and landslides.

[Short answer/Paragraphs]

MODULE 6. Ecological tools and Techniques (4 hrs)
Commonly used techniques for study of animal populations: a) Sampling of animal populations b) Trapping and collecting various groups of organisms [insects, aquatic organisms, soil organisms, birds and mammals] c) Marking of animals d) Determination of age in animal groups d) Determination of home range and territory e) Estimation of number of animals in a population f) Indirect method of estimating wild animal populations g) Recent trends- Camera trapping, Radio collaring and Remote sensing

[Short answer/Paragraphs]
Section B: CONSERVATION BIOLOGY (14 hrs)

MODULE 7. Biodiversity (10 hrs)

Introduction, Components of biodiversity: Genetic diversity, species diversity (mention Shannon diversity index and Simpson's dominance index), community diversity and ecosystem diversity, landscape diversity; Levels of diversity in community and ecosystem diversity: Alpha, beta and gamma diversities.

Hot spots of biodiversity. Mention hotspots in Indian region (Western Ghats and Sri Lanka, Himalayas, Indo Burma and Sundaland).

Threats to biodiversity; Loss of biodiversity and its causes.

Biodiversity conservation strategies: Protection of endangered species - *Ex situ conservation* (conservation in Seed banks, Gene banks, Germ plasm banks, Zoo, Botanical gardens etc.).

In situ conservation: Wildlife Sanctuaries - Thattekkad bird sanctuary, ParambikulamWLS, PeriyarWLS, Malabar WLS); National Parks- Eravikulam NP & Silent Valley NP; Biosphere Reserves - Nilgiri BR & Agasthyamalai BR; Community reserve- Kadalundy.

[Short answer/Paragraph/Essays]

MODULE 8. Global strategy for conservation (4 hrs)

[Short answer/Paragraphs]

MODULE 9. Toxicants and public health hazards (4 hrs)

a. Toxic chemicals (biocides, automobile emissions, heavy metals, fertilizers, food additives, xenobiotics, radioactive wastes).

b. Classification of poisons; Physico-chemical characteristics and mode of action of poisons; Accidental, suicidal and homicidal poisonings; Signs and symptoms of common poisoning and their antidotes.

c. Levels of toxicity: Acute, sub acute, chronic, Dose-response relationship. Measures of toxicity: LD$_{50}$ and LC$_{50}$.

[Short answer/Paragraphs]

Topics for Assignments/Seminars

(Topics allotted for assignments/ seminars should be considered for internal assessments only, and can be subdivided among students)

1. Environmental factors (Temperature, water, light, soil) and their influence on organisms.
2. Concept of habitat and niche.
3. Food chains and food web.
4. Major biomes of the world.
5. Ecological pyramids.
6. Ecological succession, basic types and processes in succession.
7. Environmental pollution - Land, water, air, sound and radiation.
8. Global warming and Ozone depletion.
9. Individual responsibilities – Role of Governmental and Non-Governmental Organizations in biodiversity conservation – Chipko, Green peace WWF

REFERENCES

- Burchan, P.C. (2013) *An Introduction to Toxicology*, Springer
- Survey of the Environment, The Hindu
- [http://library.open.oregonstate.edu/monitoring/chapter/field-techniques-for-
population-sampling-and-estimation/](http://library.open.oregonstate.edu/monitoring/chapter/field-techniques-for-population-sampling-and-estimation/)
SIXTH SEMESTER B.Sc. ZOLOGY PROGRAMME

ZOLOGY CORE COURSE – XII [Theory]

ETHOLOGY, EVOLUTION AND ZOOGEOGRAHY

Code: ZOL6B13T

[54 hrs] [3 hours per week] [3 credits]

COURSE OUTCOMES [COs]

<table>
<thead>
<tr>
<th>COs</th>
<th>Course Outcome Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Describe the patterns and mechanisms of animal behaviour (5 hrs)</td>
</tr>
<tr>
<td>CO2</td>
<td>Illustrate biological rhythms and the chemical basis of communication (7 hrs)</td>
</tr>
<tr>
<td>CO3</td>
<td>Identify major evolutionary transitions over time, and explain the tools and evidences that support current hypotheses of the history of life on earth (8 hrs)</td>
</tr>
<tr>
<td>CO4</td>
<td>Describe the evidences for evolution and its required corollaries (5 hrs)</td>
</tr>
<tr>
<td>CO5</td>
<td>Explain the various theories of evolution (6 hrs)</td>
</tr>
<tr>
<td>CO6</td>
<td>Describe the mechanisms by which evolution occurs (5 hrs)</td>
</tr>
<tr>
<td>CO7</td>
<td>Recognize the significance of reproductive isolation in reducing gene flow between populations, biological and morphological species concepts and distinguish between prezygotic and postzygotic barriers to reproduction (7 hrs)</td>
</tr>
<tr>
<td>CO8</td>
<td>Review the events in human evolution (3 hrs)</td>
</tr>
<tr>
<td>CO9</td>
<td>Explain ecological and historical foundations for understanding the distribution and abundance of species, and their changes over time and comprehend the basic principles of biogeography as a discipline (8 hrs)</td>
</tr>
</tbody>
</table>

Question paper pattern for external examination

[Module 1-2: Short answer 4x2=8 marks, Paragraph 2x5=10 marks; Module 3-8: Short answer 5x2=10 marks, Paragraph 4x5=20 marks, Essay 2x10=20 marks; Module 9: Short answer 3x2=6 marks, Paragraph 1x5=5 marks]

Section A: ETHOLOGY (12 hrs)

MODULE 1. Patterns and Mechanisms in Animal Behaviour (5 hrs)

Introduction and Patterns of behavior (4 hrs)

History (brief), scope of ethology. (a) Innate behaviour: Orientation-taxes/kinesis, simple reflexes, instincts, motivation. (b) Learned behaviour: Habituation, conditioned reflex, trial and error learning; latent learning, imprinting, insight learning, memory and learning.

Neural mechanism in behavior (1 hr)

Role of hypothalamus in thirst and feeding; role of cerebral cortex in emotional behavior; mammalian limbic system and control of behavior (brief account).

[Short answers/Paragraphs]

MODULE 2. Biological rhythm and Sociobiology (7 hrs)

Biological clocks/rhythms (4 hrs)

Photoperiodism, circadian rhythm; migration, orientation, navigation and homing; diapause, hibernation and aestivation (brief account)

Sociobiology (3 hrs)

Social groups in termites and elephants; Chemical communication: classification and significance of pheromones (mention human pheromones also).

[Short answers/paragraphs]
Section B: EVOLUTION (34 hrs)

MODULE 3. Course of Evolution (8 hrs)

History of Evolutionary thought (1 hr)
History of evolutionary thought: Ideas of evolution during Pre-Darwinian, Darwinian and Post-Darwinian periods (brief account).

Origin of life (6 hrs)

History of Life on Earth (1 hr)
Geological time scale (simple chart), mention Cambrian explosion. Fossils, Fossilization and Dating of fossils (brief account). Living fossils: Peripatus, Limulus and Sphenodon as examples.

[Short answers/Paragraphs/Essays]

MODULE 4. Evidences of Organic Evolution (5 hrs)
i) Morphological and anatomical, ii) physiological and biochemical, iii) embryological, iv) palaeontological, v) molecular, vi) taxonomical evidences and vii) biogeographical evidences

[Short answers/Paragraphs/Essays]

MODULE 5. Theories of Evolution (6 hrs)
Lamarck’s theory: Explanation of the major postulates of the Lamarck’s theory with examples, Criticism against Lamarckism, Neo-Lamarckism, Present status of Lamarckism.
Darwin’s theory: Explanation of important postulates of Darwin’s theory, Examples for natural selection, Criticism against Darwinism, Neo-Darwinism (Synthetic theory of evolution).
Weismann’s germplasm theory; Mutation theory of De Vries. Mention the contributions of Wallace.

[Short answers/Paragraphs/Essays]

MODULE 6. Concepts of Evolutionary Process (5 hrs)

[Short answers/Paragraphs/Essays]
MODULE 7: Nature of Evolution (7 hrs)
Species and Speciation: Species concept: phylogenetic and biological species concepts; General characteristics and subdivisions of species: subspecies, sibling species, cline and deme.
Speciation: Types of speciation i) Phyletic speciation ii) Quantum speciation iii) Gradual speciation; Major methods of natural speciation: Allopatric, parapatric and sympatric speciation.
Isolation and Isolating mechanisms: Types of isolating mechanisms i) Geographic isolation: mention examples, ii) Reproductive isolation (a) Prezygotic isolation (habitat, seasonal, ethological, morphological, physiological and cytological isolation with examples), (b) Postzygotic isolation (hybrid inviability, hybrid sterility and F2 breakdown isolation with examples).
Adaptive Radiation (Divergent Evolution): cause and significance, adaptive radiation in Darwin’s finches; Convergent Evolution; Pre-adaptation; Co-evolution (mention examples also).

[Short answers/paragraphs/Essays]

MODULE 8: Evolution of Modern Man (3 hrs)
Evolutionary trends in humans; Fore-runners of anthropoids-Parapithecus; Fore-runners of apes-Dryopithecus; Fore-runners of modern man-Ramapithecus (Kenyapithecus), Australopithecus (The ape-man), Homo habilis (The handy man), H. erectus (Pithecanthropines), H. sapiens neanderthalensis (Neanderthal man), Homo sapiens fossilis (The Cro-magnon), Homo sapiens sapiens (Modern man), mention Denizoans and Malapan man.

[Short answers/paragraphs/Essays]

Section C: ZOOGEOGRAPHY (8 hrs)
MODULE 9: Zoogeographical realms and Biogeography of India (8 hrs)
Geographical Distribution (4 hrs)
(a) Geographical distribution of animals: Cosmopolitan, discontinuous, bipolar and isolated distribution. (b) Barriers in animal distribution: Physical, climatic and biological barriers.
Zoogeographical realms (2 hrs)
Zoogeographical regions with specific fauna (faunal regions): Palaeartic region, Nearctic region, Neotropical region, Ethiopean region, Oriental region and Australian region; brief description on Wallace line, Weber line and Wallacea.
Insular fauna (1 hr)
Faunal characteristics of continental (Madagaskar and Sri Lanka) and oceanic islands (Galapagos and New Zealand).
Biogeography of India (1 hr)
Biogeographical zones of India: Himalayan, Desert zone, Semi-arid zone, Western Ghats, Deccan plateau, Gangetic plain, North east Indian zone, Island zone and Coastal zone (brief account).

[Short answer/Paragraphs]
Topics for Assignments / Seminars
(Topics allotted for assignments/ seminars should be considered for internal assessments only, and can be subdivided among students)

2. Evolution of Vertebrate Groups: Evolution of agnathans, fishes, amphibians, reptiles, birds and mammals (brief account).
3. Evolution of horse
4. Polyploidy and Evolution
5. Ancestry of human population of India

REFERENCES

Module 1-2 (Ethology)

Module 3-8 (Evolution)

Module 9 (Zoogeography)
HUMAN GENETICS

Course Code: ZOL6B14(E)01T

[54 hours] [3 hours per week] [3 Credits]

COURSE OUTCOMES [COs]

<table>
<thead>
<tr>
<th>COs</th>
<th>Course Outcome Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Explain the characteristics, nomenclature and classification of human chromosomes; non-disjunction of chromosomes and the phenotypic effects of chromosome structural modifications (16 hrs)</td>
</tr>
<tr>
<td>CO2</td>
<td>Understand the construction of pedigrees of Sex-linked and Autosomal dominant and recessive gene mutation disorders and presentation of molecular genetic data in pedigrees (4 hrs)</td>
</tr>
<tr>
<td>CO3</td>
<td>Enumerate the major autosomal and X-linked dominant and recessive human genetic disorders (8 hrs)</td>
</tr>
<tr>
<td>CO4</td>
<td>Explain multifactorial inheritance (4 hrs)</td>
</tr>
<tr>
<td>CO5</td>
<td>Understand the basic genetics of reproduction and development (9 hrs)</td>
</tr>
<tr>
<td>CO6</td>
<td>Explain the prenatal diagnostic techniques, major genetic services and genetic counseling (9 hrs)</td>
</tr>
<tr>
<td>CO7</td>
<td>Describe human genetic variations, archaeogenetics of South Asia and genetic origin of Indian populations (4 hrs)</td>
</tr>
</tbody>
</table>

Question paper pattern for external examination

[Module 1-3: Short answer 3x2=6 marks, Paragraph 5x5=25 marks, Essay 1x10=10 marks
Module 4-5: Short answer 4x2=8 marks, Paragraph 2x5=10 marks
Module 6-7: Short answer 5x2=10 marks, Essay 1x10=10 marks]

MODULE 1. Human chromosomes (16 hrs)

Classification and nomenclature (9 hrs)

Non-disjunction of Chromosomes (2 hrs)

Meiotic non-disjunction, mitotic non-disjunction, non-disjunction of autosomes, non-disjunction of sex chromosomes and mosaicism

Chromosome structural modification and the human phenotype (5 hrs)

Ring chromosome, Iso chromosomes, Philadelphia chromosome, Cri-du-chat syndrome (5p-syndrome) Prader willi syndrome, Fragile X-Syndrome (Martin Bell syndrome), Burkitt’s lymphoma (14q+ syndrome)

[Short answers/Paragraphs/Essays]

MODULE 2. Human Pedigrees (4 hrs)

Gathering family history, Symbols of Pedigree, construction of pedigrees, Pedigrees of Sex-linked and Autosomal (dominant and recessive), X-linked dominant and recessive gene mutation disorders. Presentation of molecular genetic data in pedigrees.

[Short answers/Paragraphs]
MODULE 3. Chromosomal Disorders (8 hrs)

Autosomal dominant disorders (4 hrs)
Familial hypercholesterolemia, metabolic and genetic control of cholesterol, Huntington’s disease, Marfan’s syndrome (Arachnodactyly), Ehlers-Danlos Syndrome (Rubber man or the Elastic Woman).

Autosomal recessive disorders (2 hrs)
Cystic fibrosis - CF gene and protein, Detection of CF homozygotes and carriers, hereditary microcephaly.

X-linked dominant and recessive disorders (2 hrs)
Duchenne muscular dystrophy, identification of the DMD gene, carriers and hemizygotes, X-SCID.

[Short answers/Paragraphs/Essays]

MODULE 4. Multifactorial Inheritance (4 hrs)
Congenital heart diseases (ASD and VSD), Alzheimer’s disease, Schizophrenia, Intelligence

[Short questions]

MODULE 5. Genetics of Reproduction and Development (9 hrs)
Prenatal development: genes and hormones. Errors in sexual development: Defects of androgen target cells-deficiency of 5-alpha reductase, congenital adrenal hyperplasia (CAH) and sex reversal.
Maternal effect genes, Segmentation and pattern formation genes, Adhesion molecules and genes, Genomic imprinting, Inbreeding in isolates. Consanguinous marriages, twin studies, biology of twinning, analysis of twin data.

[Short answers/Paragraphs/Essays]

MODULE 6. Prenatal diagnosis, Genetic Services and Genetic Counselling (9 hrs)
Prenatal diagnosis and genetic services (5 hrs)
Amniocentesis, chorionic villi sampling (CVS), foetoscopy, ultrasonography (USG), Alpha foeto protein screening, prenatal sexing. Test tube babies; Karyotyping; Genetic sequencing and future medicine.

Genetic counselling (4 hrs)
Procedures and ethical concerns; History of counseling; Methods of genetic counselling - marriage counselling, directive and non-directive reason for seeking counseling; Psychodynamics of genetic counselling.

[Short answers/Essays]

MODULE 7. Evolutionary Genetics (4 hrs)
Human genetic variation - haplogroups; Human races, human variability messages from mitochondrial DNA. Archaeogenetics: Genetics and archaeogenetics of South Asia - out of Africa theory. Genetic origin of Indian populations - Indian Genome Variation initiative. Pharmacogenetics and Ecogenetics (Brief account), Mention phenocopy

[Short answers]
Topics for assignments/seminar
(Topics allotted for assignments/ seminars should be considered for internal assessments only, and can be subdivided among students)

1. Mitochondrial DNA mutations in human disease.
2. Sequence components of the human genome.
3. Organization of the human genome.
4. Sex linked disorders.
5. Autism spectrum disorder.

REFERENCES

SIXTH SEMESTER B. Sc. ZOOLOGY PROGRAMME

ZOOLOGY ELECTIVE CORE COURSE- II (Theory)

AQUACULTURE, ANIMAL HUSBANDRY AND POULTRY SCIENCE

Code: ZOL6B14(E)02T

[54 hours] [3 hours per week] [3 Credits]

COURSE OUTCOMES [COs]

<table>
<thead>
<tr>
<th>COs</th>
<th>Course Outcome Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Explain aquaculture and the process of prawn, mussel and pearl culture (10 hrs).</td>
</tr>
<tr>
<td>CO2</td>
<td>Illustrate the methodology of pisciculture and understand common culture fishes and ornamental fishes (13 hrs)</td>
</tr>
<tr>
<td>CO3</td>
<td>Identify major fishing crafts and gear and enumerate fish utilization and preservation (13 hrs)</td>
</tr>
<tr>
<td>CO4</td>
<td>Enumerate the poultry rearing techniques and understand major breeds of fowl (7 hrs)</td>
</tr>
<tr>
<td>CO5</td>
<td>Understand the major breeds of cattle, cattle feeds and diseases of cattle (6 hrs)</td>
</tr>
<tr>
<td>CO6</td>
<td>Illustrate the steps in dairy processing and identify the role of dairy development in rural economy (5 hrs).</td>
</tr>
</tbody>
</table>

Question paper pattern for external examination

[Module 1-3: Short answer 6x2=12 marks, Paragraph 4x5=20 marks; Essay 2x10=20 marks
Module 4-6: Short answer 6x2=12 marks, Paragraph 3x5=15 marks]

MODULE 1. Aquaculture (10 hrs)

Types of aquaculture

Brief account of classification of aquaculture based on:

- Environment – Freshwater, brackish water and mariculture.
- Temperature – Warm water/cold water culture.
- Culture techniques – pond aquaculture, cage culture, pen culture, raft culture, pole culture, rack culture and long line culture.
- Number of species – Mono culture and poly culture.
- Type of organism – prawn culture, shrimp culture, edible oyster culture, lobster culture etc.

Mariculture

Prawn culture: Important cultivable species in India, seed collection, spawning and larval rearing, induced breeding, types of culture systems - Pokkali culture, culture in bheries/ponds, culture and harvesting.

Mussel culture: Perna indica, Perna viridis, Seed collection, artificial seed production, induced spawning, culture techniques and harvesting.

Pearl culture: Method of pearl formation, selection and preparation of host, preparation of nucleus and implantation, post-operation care, post-operation culture and collection of pearls.

[Short answers/Paragraphs/Essays]

MODULE 2. Pisciculture (13 hrs)

i. Egg collection; induced spawning; construction, preparation and maintenance of ponds; manuring; feeding and harvesting. Cryopreservation of fish germplasm, semen bank and preservation media.

ii. Biology and culture of following Indian major carps: Catla catla, Labeo rohita, Cirrhinus mrigala.
iii. Biology and culture of Exotic carps: *Cyprinus carpio* (common carp), *Hypophthalmichthys molitrix* (Silver carp).

iv. Inland fishes and Fisheries (Brief account): *Channa, Clarias* and *Etroplus suratensis*

v. General account and fishery aspect of Sardine, Shark and Tuna. Mention GIFT Tilapia and Nutter (*Pogocentrus nutteri*).

vi. Ornamental fisheries: Common aquarium fishes: e.g. *Carassius auratus* (Gold fish), *Pterophyllum* spp. (Angel fish), *Astronotus ocellatus* (Oscar cichlid), *Poecilia reticulata* (Guppy), *Poecilia sphenops* (Black molly), aquarium management.

[Short answers/Paragraphs/Essays]

MODULE 3. Fishing Crafts and Gear, fish preservation and utilization (13 hrs)

i. Fishing crafts – Mention Catamaran, Canoes and dug-out-canoes.

ii. Fishing gears – Gillnet/drift gillnet, purse-seines, harpoon, Chinese dipnets, echo sounders, sonar, remote sensing.

iii. Fish Spoilage and Preservation: Biochemical changes, spoilage, use of ice, freezing, canning, dehydration, salting and smoking.

iv. Fish utilisation: Nutritive value, bye products, liver oil, body oil, fish meal, fish flour, Isinglass, glue, skin, fin soup, lime, chitin and chitosan.

v. Diseases and parasites of Fish: Fungal infection – Epizootic Ulcerative Syndrome (EUS), Saprolegnia, Fin and tail rot disease, Dropsy.

vi. Mud banks of Kerala coast.

[Short answers/Paragraphs/Essays]

MODULE 4. Poultry science (7 hrs)

i. Egg production, cable bird production, nutritive value and bye products.

iii. Poultry rearing: Selection of eggs, hatching, incubation, brooding, sexing and vaccination.

iv. Poultry housing: Free range system, Semi-intensive system (deep litter system and individual cage system).

v. Equipments for feeding: Nutrients for starting, growing, laying hen.

vi. Common poultry feeds, food rations and feed formulation.

vii. Common diseases of poultry (Ranikket, Pullorum and Fowl pox)

[Short answers/Paragraphs]

MODULE 5. Animal husbandry (6 hrs)

Introduction: History, origin, domestication.

Breeds of cattle:
- Dairy breeds: Sindhi, Gir
- Draught breeds of cattle: Nagori, Kangayam
- Dual purpose breeds: Ongole, Hariana
- Exotic breeds: Jersey, Holstein – Friesian
- Native breeds: Conservation programmes, Vechur cow and Kasargod Dwarf

Feeding: Common cattle feeds, fodder
Common diseases: Anthrax, Foot & Mouth disease.
Parasites of cattle
Meat hygiene: Slaughter and clean meat production – Zoonotic diseases.

[Short answers/Paragaphs]

MODULE 6. Dairy science (5 hrs)

i. Role of dairy development in rural economy, employment opportunities, white revolution.

iii. Artificial milk, Milk adulteration.

[Short answers/Paragraphs]

Topics for Assignments/Seminars

Topics allotted for assignments/ seminars should be considered for internal assessments only, and can be subdivided among students

1. Role of physical and chemical factors in aquaculture.
2. Sea weed culture: e.g: Grassilaria, Sargassum.
3. Dairy products, manufacture and nutritive value.
4. Milk and milk spoilage.
5. Crab and lobster culture.

REFERENCES

- Alikunhi, K H (1957): Fish culture in India: CMFRI Farm Bulletin (20). 144 pages
- P.R. Venkitaraman: Economic Zoology, R.S. Publications
SIXTH SEMESTER B. Sc. ZOOLOGY PROGRAMME
ZOOLOGY ELECTIVE CORE COURSE - III (Theory)

APPLIED ENTOMOLOGY
Code: ZOL6B14(E)03T

[54 hours] [3 hours per week] [3 Credits]

COURSE OUTCOMES [COs]

<table>
<thead>
<tr>
<th>COs</th>
<th>Course Outcome Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Describe the branches of entomology and insect services (6 hrs)</td>
</tr>
<tr>
<td>CO2</td>
<td>Identify and explain the lifecycle, damages and control of insect pests of crop plants and domestic animals (26 hrs)</td>
</tr>
<tr>
<td>CO3</td>
<td>Review the insect control strategies (11 hrs)</td>
</tr>
<tr>
<td>CO4</td>
<td>List and describe the useful insects and the products derived from bees, silkworms and lac insects (11 hrs)</td>
</tr>
</tbody>
</table>

Question paper pattern for external examination
[Module 1: Short answer 2x2=4 marks, Paragraph 1x5=5 marks; Module 2: Short answer 6x2=12 marks, Paragraph 3x5=15 marks, Essay 1x10=10 marks; Module 3-4: Short answer 4x2=8 marks, Paragraph 3x5=15 marks, Essay 1x10=10 marks]

Section A: AGRICULTURAL ENTOMOLOGY

MODULE 1. General Introduction and Insect services (6 hrs)

Introduction to Entomology (4 hrs)

Insects in service of man (2 hrs)
Insects as pollinators, parasitoids, scavengers (enhancing soil fertility), pollution indicators, model organisms for scientific research; herbivory for weed control; insects in medicine and forensic science; insects of aesthetic value; use of insect pheromones and hormones.

[Short answers/Paragraphs]

MODULE 2. Harmful Insects: pests of crops and domestic animals (26 hrs)

Insects as enemies of man
Definition of pests, kinds of insect pests, causes of pest outbreak, pests injurious to plants and animals, vectors of diseases.

a) Pests of paddy (Life cycle, damage and control measures)
1. Nilapavarta lugens (Brown plant leafhopper)
2. Leptocorisa acuta (Rice bug)
3. Cnaphalocrocis medinalis (Rice leaf folder)

b) Pests of coconut (Life cycle, damage and control measures)
1. Oryctes rhinoceros (Rhinoceros beetle)
2. Opisina arenosella (Black headed caterpillar)
3. Rhynchophorus ferrugineus (Red palm weevil)
c) **Pests of Sugarcane** (damage and control measures)
1. *Chilo infuscattellus* (Sugar cane shoot borer)
2. *Scirpophaga nivella* (Sugar cane top borer)
3. *Sacchariococcus sacchari* (Cane mealy bug)

d) **Pests of plantation crops:** Two examples for each, damage and control measures.

```
Coffee
1. *Xylotrechus quadripes* (Coffee white stem borer)
2. *Coccus viridis* (Coffee green bug)

Tea
1. *Helopeltis antonii* (Tea mosquito bug)
2. *Toxoptera aurantii* (Tea aphid)

Rubber
1. *Saissetia nigra* (Scale insect)
2. *Aetherastis circulata* (Bark feeding caterpillar)

Pepper
1. *Longitarsus nigripennis* (Pollu beetle)
2. *Laspeyresia hemidoxa* (Top shoot borer)

Cardamom
1. *Sciothrips cardamomi* (Cardamom thrips)
2. *Eupterote canarica* (Cardamom hairy caterpillar)
```

e) **Pests of fruit plants:** Two examples for each, damage and control measures.

```
Banana
1. *Odoiporus longicollis* (Pseudostem borer)
2. *Pentalonia nigronervosa* (Banana aphid)

Mango
1. *Batocera rufomaculata* (Mango stem borer)
2. *Orthaga exvinacea* (Mango leaf webber)

Cashew
1. *Neoplocaederus ferrugineus* (Cashew stem borer)
2. *Lamida moncusalis* (shoot and blossom webber)
```

f) **Pests of vegetables:** Two examples for each, damage and control measures.

```
Lady’s finger
1. *Helicoverpa armigera* (fruit borer)
2. *Earias vitella* (Spotted bollworm)

Brinjal
1. *Leucinodes orbonalis* (Shoot and fruit borer)
2. *Henosepilachna vigintioctopunctata*

Cucurbits
1. *Bactrocera cucurbitae* (Melon fly)
2. *Raphidopala foveicollis* (Pumpkin beetle)
```

g) **Pests of stored products:** damage and control measures

```
1. *Tribolium castaneum* (Rust red flour beetle)
2. *Callasobruchus chinensis* (Pulse beetle)
```

h) **Pests of domestic animals**

```
1. Domestic fowl
   *Menopon gallinae* (Shaft louse)
2. Goat
   *Oestrus ovis*
3. Cattle
   *Tabanus striatus*
```

[Short answers/Paragraphs/Essays]

MODULE 3. Control of Insect Pests (11 hrs)

a) Natural control b) Applied control or artificial control

Prophylactic and curative methods: cultural, mechanical, legal methods; biological and chemical methods.

Biological control: Ecological, biological and economic dimensions of biological control. Mention any three important biological control projects undertaken in India. Merits and demerits.

Chemical control: Classification of insecticides- mode of entry, mode of action, chemical nature; botanical insecticides; insecticide residue, resistance and
resurgence of insect pests; pesticide appliances (hand compression sprayer, knapsack sprayer and rocker sprayer); environmental degradation of pesticides (brief account).
Autocidal and Pheromonal control (brief accounts)
Integrated pest management (IPM) – Features and advantages

[Short answers/Paragraphs/Essays]

Section B: INDUSTRIAL ENTOMOLOGY

MODULE 4: Industrial Entomology (11 hrs)

Productive insects:
a) Honey bee: Apiculture in India: Scope, Diversity, Castes, Morphological and communicative adaptations. Bee products – Honey and bee wax, composition and uses,
b) Silk moth: Types of silk worms (mulberry, eri, muga, tassar), life cycle of mulberry silkworm; sericulture and moriculture: processing and extraction of silk; composition and uses of silk.
c) Lac insect: lac host plants, different strains of lac insects, cultivation, inoculation, harvesting and propagation of lac, composition and uses of lac.

[Short answers/Paragraphs/Essays]

Topics for Assignments/Seminars
2. Diseases and its control measures: Filariasis, Yellow fever, Dengue, Typhus fever and Kala-azar.
3. Insects as source of protein for human
4. Causes of success of insects
5. Bee diseases and enemies.

REFERENCES
- Metcalf,C.L., & Fint,W.P. 1973 Destructive and Useful Insects, USDA / TMH
B. Sc. ZOOLOGY PROGRAMME
ZOOLOGY [CORE COURSE] PRACTICAL – III
Cod: ZOL6B16P

[Practical III*A + Practical III*B] [4 Credits]

PRACTICAL III*A: PHYSIOLOGY, ENDOCRINOLOGY, REPRODUCTIVE AND
DEVELPOMENTAL BIOLOGY [72 hours] [4 hrs /week]

PRACTICAL III*B: ENVIRONMENTAL AND CONSERVATION BIOLOGY, ETHOLOGY,
EVOLUTION, ZOOGEOGRAPHY & ELECTIVE COURSE [72 hours] [4 hrs/week]

COURSE OUTCOMES [COs]

<table>
<thead>
<tr>
<th>COs</th>
<th>Course Outcome Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Perform standard laboratory experiments for the estimation of Hb, presence of hCG/abnormal constituents in urine, detection of blood pressure, bleeding and clotting time and identification of formed elements in blood (46 hrs)</td>
</tr>
<tr>
<td>CO2</td>
<td>Identify selected stages in the development of frog and chick and chosen larval forms of invertebrates and vertebrates (26 hrs)</td>
</tr>
<tr>
<td>CO3</td>
<td>Carry out experiments of laboratory standards to estimate water quality parameters including, dissolved Oxygen, Carbon dioxide, hardness and pH; determination of adulteration of selected food items and identify marine planktons and soil organisms (28 hrs)</td>
</tr>
<tr>
<td>CO4</td>
<td>Demonstrate the behavioural response of earthworm/dipteran larva to selected stimuli (11 hrs)</td>
</tr>
<tr>
<td>CO5</td>
<td>Describe homologous, analogous and vestigial organs, connecting links, adaptive radiation and evolution of man (11 hrs)</td>
</tr>
<tr>
<td>CO6</td>
<td>Illustrate zoogeographical realms, Wallace line, Weber line, Wallacea and the distribution of Peripatus, lung fishes, Sphenodon, monotremes and marsupials (11 hrs)</td>
</tr>
<tr>
<td>CO7</td>
<td>Identify the normal and selected abnormal human karyotypes and inheritance of chosen traits from pedigree charts/describe ornamental and other culture fishes/describe chosen beneficial and harmful insects (11 hrs)</td>
</tr>
</tbody>
</table>

SIXTH SEMESTER B. Sc. ZOOLOGY PROGRAMME

PRACTICAL III*A:
PHYSIOLOGY, ENDOCRINOLOGY, REPRODUCTIVE AND
DEVELPOMENTAL BIOLOGY
[72 hours] [4 hrs/week]

Section A. PHYSIOLOGY AND ENDOCRINOLOGY (46 hrs)
1. Detection of Abnormal constituents of urine [glucose, ketone bodies and albumin] (Major).
2. Preparation human blood smear to study the formed elements (Major).
3. Osmotic response of RBC to saline solutions of different concentrations (Minor).
4. Determination of Hb content in man using Haemoglobinometer (Minor)
5. Determination blood clotting time (Demonstration).
6. Determination of blood pressure (Demonstration).
7. Determination of Body mass index.
8. Study of the histology of the following endocrine glands - pituitary, thyroid, adrenal and endocrine pancreas using slides/photographs.
Section B. REPRODUCTIVE AND DEVELOPMENTAL BIOLOGY (26 hrs)

1. Demonstration of chick blastoderm.
2. Induced ovulation in fish.
4. Spotters:
 - Types of eggs (Insect, Amphioxus, frog, chick, and human).
 - Cleavage in frog (use slides / diagrams/models).
 - Shark: Yolk sac placenta.
 - Development of Frog: Blastula, gastrula, neurula.
 - Development of Chick: 18, 24, 32, 48 hours of incubation.
 - Mammal: Any two mammalian embryos.
 - Larval forms of invertebrates (any five) and vertebrates (any two).

REFERENCES

PRACTICAL III*B

ENVIRONMENTAL AND CONSERVATION BIOLOGY, ETHOLOGY, EVOLUTION, ZOOGEOGRAPHY & ELECTIVE [HUMAN GENETICS/AQUACULTURE, ANIMAL HUSBANDRY & POULTRY SCIENCE/APPLIED ENTOMOLOGY]

[72 hrs] [4hrs/week]

Section A: ENVIRONMENTAL AND CONSERVATION BIOLOGY (28 hrs)

1. Estimation of dissolved O₂ in water sample using Winkler’s method (Major).
2. Estimation of dissolved CO₂ in pond and tap water (Major).
3. Estimation of total hardness of water (Major).
5. Extraction of soil organism by hand picking, floatation and Berlese funnel method (Minor).
6. Study of marine planktons (any five items up to genus level) (Minor).
7. Study of a pond ecosystem and preparation of food chains and food web (Minor).
8. Detection of food adulteration in selected food items (Minor).
 - i) Detection of starch and urea in milk.
 - ii) Detection of tea adulterated by colouring.
 - iii) Detection of maida and chalk powder in wheat flour.
Section B: ETHOLOGY, EVOLUTION & ZOO GEOGRAPHY (33 hrs)

Ethology (Any three) (11 hrs)

1. Demonstration of the effect of alarm pheromones in ants.
2. Demonstration of phototaxis using Earth worm.
3. Study of Chaemotaxis in third instar larvae of Drosophila melanogaster to odours [Fructose, Yeast and Ethyl acetate].
4. Locomotory behaviour of dipteran larvae (Housefly/blowfly/fruitfly): on different types of substrata (writing paper, plastic sheet and sand paper).
5. Effects of light intensity and light quality on the rate of locomotion of dipteran larva.

Evolution (11 hrs)

Study of models, charts and specimens related to comparative study of:
1. Study of homologous organs (limbs of 5 different groups of vertebrates).
2. Study of analogous organs (wings of bird, insect and bat).
3. Study of any four vestigial organs in humans.
4. Study of evolution of man based on three hominid fossils.
5. Study of connecting links (Peripatus and Archeopteryx).

Zoogeography (11 hrs)

1. Preparation of world map to show six zoogeographical realms.
2. Preparation of world map to show islands of zoogeographical significance.
3. Preparation of world map to show Wallace line, Weber line and Wallacea.
4. Locate the distribution of following animals in the world map: Peripatus, lungfishes, Sphenodon, monotremes, marsupials

Section C: ELECTIVE COURSE [11 hrs]

[Human Genetics/Aquaculture, Animal Husbandry & Poultry Science/Applied Entomology]

HUMAN GENETICS

1. Problems on (a) autosomal dominant and recessive (b) polygenic traits (skin colour), (c) Sex linkage (X-linked genes and Y-linked genes).
2. Study of identical and fraternal twins.
3. Dermatoglyphics: Identification of arch, loop and whorl patterns; total ridge count in male and female; Tri- radii, importance of atd angle, simian line.
4. Ischiara chart (to detect red-green colour blindness).
5. Seminars on genetics in cardiology, oncology and genetic counselling, Pre-natal sexing, amniocentesis, importance of genetic screening.
6. Pedigree studies and identification of the nature of inheritance from pedigree chart (any one trait).
7. Identification of human karyotypes (Edwards and Patau’s) from ideogram

AQUACULTURE, ANIMAL HUSBANDRY AND POULTRY SCIENCE

1. Culture of fish food organisms: protozoans, rotifers and crustaceans.
2. Maintenance of spawn and its transportation to hatching or rearing tanks.
3. Identification of major food fishes (fresh water, estuarine and marine – 5 from each group).
4. Study of different crafts and gears.
5. Study of common ornamental fishes (record any seven with photograph).
6. Breeding techniques: preparation of hormone extracts and injection of hormones to fishes; Eyestalk ablation in prawns.
7. Study of fish products and by-products.
8. Identification of larval forms of prawn, pearl oyster, mussel, lobster and crab.
9. Identification of major edible crustaceans and molluscs.
10. Identification of edible sea weeds.

APPLIED ENTOMOLOGY

1. Identification and brief notes on the following pests: Any two pests of paddy; coconut; banana; mango; cashew; coffee; tea; rubber; pepper; cardamom and pests of vegetables. Pests of stored products (any two).
2. Study of damage caused by pests (damaged parts of plants, fruits and seeds, wood etc. may be used).
3. Identification and study of insect pests/ectoparasites of man, domestic animals and wild animals: mosquitoes (different stages of life-history), head louse, pubic louse, bird louse, rat flea, Tabanus, Hippobosca, a tick and a mite on dog/cat.
4. Identification and economic importance of the following
 a) Honey bee and bee products
 b) Silkworm moth: life cycle stages, silk fibre
 c) Lac insect and stick lac or shellac.
5. Preparation of: a) tobacco decoction, b) kerosene soap emulsion, c) neem kernel suspension
6. Pesticide appliances: Dusters or sprayers a) Hand compression sprayer b) Rocker sprayer c) Knapsack sprayer/duster d) Hand automizer (any 3)

REFERENCES

• D.S. Reddy: *Applied Entomology*; New Vishal Publications
UNIVERSITY OF CALICUT
B.Sc. DEGREE PROGRAMME

SYLLABUS

COMPLEMENTARY COURSE: ZOOLOGY
B.Sc. ZOOLOGY COMPLEMENTARY COURSE

INTRODUCTION

Board of Studies in Zoology (U.G.) of University of Calicut reviewed the existing Zoology complementary courses and decided to revise and update the B.Sc. Zoology Complementary syllabus. The Board recommended that the revised syllabus may be implemented for the B.Sc. Degree Programme of the University of Calicut, which offers Zoology as one of the Complementary subjects, with effect from 2019 admission.

Accordingly, course content, scheme of instruction, evaluation, credits, marks and duration of examinations of B.Sc. Zoology Complementary Courses are modified. Course outcomes are also introduced for each complementary course. The course structure includes both theory and practical components to be dealt with during the first four semesters of the programme. Accordingly there will be four complementary theory courses, one each in the first four semesters of the B.Sc. Programme and the theory examinations will be conducted at the end of the respective semester. There is only one practical course and its examination will be conducted at the end of the fourth semester. The practical course is designed in such a way that they support the theory course in first four semesters and also impart the basic skills on techniques expected of a zoology student. Attempts have been made to update the syllabus by incorporating the recent trends in various branches of Zoology, conforming to the work load prescribed by the University.

COMPLEMENTARY COURSE: SCHEME OF INSTRUCTION

Zoology is one of the Complementary courses of the B.Sc. Degree Programme. It is to be taught during the first four semesters of the programme. Course title, scheme of instruction and evaluation, distribution of credits and marks and other details of B.Sc. Zoology Complementary Course is shown in Table 1. The syllabus includes Theory as well as Practical components.

Theory
The total number of theory complementary courses is four [ZOL1C01T, ZOL2C02T, ZOL3C03T and ZOL4C04T], one in each semester. All the four courses have a credit of 2 each with a total of 8 credits.

Practical
The practical related to theory courses, (I*A, I*B, I*C and I*D) are to be conducted in the four semesters. External university practical examinations will be held only at the end of the 4th semester [ZOL4C05P; 4 credits]. Record: A candidate who appears for the practical examination must submit an authentic record of work done by him/her. Hand-drawn sketches of whole animals/ mountings/ sections/dissections are compulsory. The record should contain the scientific name, phylum and class (for vertebrates order also) of the specimens with notes on identifying features and zoological importance, if any.

Table 1
B.Sc. ZOOLOGY (COMPLEMENTARY) PROGRAMME

Structure of complementary course

Course code, Title, Instructional hours, Credits, Marks and Duration of Examinations in four semesters

Total Credit: 12 (External 80% and Internal 20%)

(2019 Admission onwards)

<table>
<thead>
<tr>
<th>Semesters</th>
<th>Complementary Course</th>
<th>Code</th>
<th>Course title</th>
<th>Instructional hours/week</th>
<th>Instructional hours in a semester</th>
<th>Credits</th>
<th>External Marks</th>
<th>Internal marks</th>
<th>Total marks</th>
<th>Duration of Exam (hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Theory I</td>
<td>ZOL1C01T</td>
<td>Animal Diversity and Wildlife Conservation</td>
<td>2</td>
<td>36</td>
<td>2</td>
<td>60</td>
<td>15</td>
<td>75</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Practical I*A</td>
<td>--</td>
<td>Practical related to theory course ZOL1C01T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>Theory II</td>
<td>ZOL2C02T</td>
<td>Economic Zoology</td>
<td>2</td>
<td>36</td>
<td>*</td>
<td>60</td>
<td>15</td>
<td>75</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Practical I*B</td>
<td>--</td>
<td>Practical related to the theory course ZOL2C02T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Theory III</td>
<td>ZOL3C03T</td>
<td>Physiology and Ethology</td>
<td>3</td>
<td>54</td>
<td>2</td>
<td>60</td>
<td>15</td>
<td>75</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Practical I*C</td>
<td>--</td>
<td>Practical related to theory course ZOL3C03T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>Theory IV</td>
<td>ZOL4C04T</td>
<td>Genetics and Immunology</td>
<td>3</td>
<td>54</td>
<td>2</td>
<td>60</td>
<td>15</td>
<td>75</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Practical I*D</td>
<td>--</td>
<td>Practical related to theory course ZOL1C01T &</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ZOL4C04T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Practical I*A+</td>
<td>ZOL4C05P</td>
<td>Zoology Complementary Practical</td>
<td></td>
<td>144</td>
<td>4</td>
<td>80</td>
<td>20</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>IB+ IC+ I*D</td>
<td></td>
<td>Practical (Practical IA, IB, IC & ID)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total credits for the B.Sc. Zoology Complementary Programme = 12 credits

- Scheme of evaluation: External 80 % + Internal 20 %
- Practical examinations for 1st, 2nd, 3rd and 4th semesters will be held at the end of 4th semester.
- Theory examinations are of 2 hours duration
- Practical examination is of 4 hrs duration.
- A panel of two examiners (one internal and one external) will evaluate the University practical examination at the end of semester IV.
COMPLEMENTARY COURSE: SCHEME OF EVALUATION

Zoology Complementary courses comprise 4 theory courses (one each in first 4 semesters (Total 8 credits) and 1 practical course (4 credits) at the end of fourth semester. Total credits for the complementary course is 12.

THEORY: EVALUATION SCHEME

The scheme of evaluation for complementary course contains two parts: viz., internal evaluation (20% marks) and external evaluation (80% marks).

1. INTERNAL EVALUATION

The internal evaluation will be a continuous process. It will be done by the faculty members of the department of Zoology of the institution where the candidate is pursuing the study. The internal assessment shall be based on a transparent system involving student’s attendance, performance in class tests, assignments and seminars in respect of theory examinations. The colleges shall send the marks obtained for internal examination to the university. Internal evaluation carries 20% (15 marks) of the total marks (75). The distribution of marks shall be as follows.

Table 2. Criteria for Internal Evaluation of Complementary course [15 marks]

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Criteria</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Test paper (1)</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Assignment</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Seminar</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Classroom Participation (CRP) (Attendance)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Marks</td>
<td>15</td>
</tr>
</tbody>
</table>

Table 2.1. Pattern of Test paper [30 Marks]

<table>
<thead>
<tr>
<th>Duration</th>
<th>Pattern</th>
<th>Total number of questions</th>
<th>Number of questions can be answered</th>
<th>Marks for each question</th>
<th>Ceiling of Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Hour</td>
<td>Short answer</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Paragraph</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Essay</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Total marks</td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

Table 2.a. Split up of internal marks for Test Paper [40%]

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Range of Marks in test paper</th>
<th>Out of 6 [Maximum internal marks 15]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>85 to 100%</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>65 to below 85%</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>55 to below 65%</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>45 to below 55%</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>35 to below 45%</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Below 35%</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 2.b. Criteria for Internal Evaluation of Assignment [20%]

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Criteria</th>
<th>Out of 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Submission in time</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Content</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Total Marks</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 2.c. Criteria for Internal Evaluation of Seminar [20%]

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Criteria</th>
<th>Out of 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Excellent</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>Good</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Average</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>*Total Marks</td>
<td>3</td>
</tr>
</tbody>
</table>

*Based on way of presentation, content, answer to questions etc.

Table 2.d. Split up of internal marks for Attendance [20%]

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Range of CRP (Attendance)</th>
<th>Out of 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>85 and above</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>75 to below 85%</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>50 to below 75%</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>below 50%</td>
<td>0</td>
</tr>
</tbody>
</table>

2. EXTERNAL EVALUATION

External evaluation carries 80% (60 marks) of the total marks (75). University theory examination will be conducted at the end of each semester. The pattern of question papers for external examination is as given below. The students can answer all the questions in Sections A & B. But there shall be ceiling (maximum marks that can be scored) in each section.

Table 3. Pattern of Question Paper for Complementary course [Theory]

<table>
<thead>
<tr>
<th>Duration</th>
<th>Pattern</th>
<th>Total number of questions</th>
<th>Number of questions can be answered</th>
<th>Marks for Each question</th>
<th>Ceiling of Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Hours</td>
<td>Section A: Short answer</td>
<td>12</td>
<td>12</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Section B: Paragraph</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Section C: Essay</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Total Marks</td>
<td></td>
<td></td>
<td></td>
<td>60</td>
</tr>
</tbody>
</table>
PRACTICAL [COMPLEMENTARY]: EVALUATION SCHEME

Practical corresponding to each complementary course will be conducted during the corresponding semesters. Internal evaluation of complementary Practical course will be conducted at 4th semester (End semester). Internal evaluation carries 20% [20 marks] of the total marks (100) in each practical. The colleges shall send only the marks obtained for internal examination to the university. External evaluation carries 80% [80 marks] of the total marks (100).

1. INTERNAL EVALUATION

Table 4. Criteria of Evaluation for Complementary Practical [20 marks]

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Criteria</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Attendance</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Lab involvement, Performance & punctuality</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Class test (1 No.)</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>Record</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Total Marks</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 4.a. Attendance

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Attendance (%)</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>85 and above</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>75 to below 85%</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>50 to below 75%</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>below 50%</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 4.b. Lab involvement, Performance & Punctuality

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Criteria</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Excellent</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Very Good</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Good</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Average</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Below Average</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 4.c. Class Test [One]

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Criteria</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>85 to 100%</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>65 to below 85%</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>55 to below 65%</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>45 to below 55%</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>35 to below 45%</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Below 35%</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 4.d. Record

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Criteria</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Punctuality in submission</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Contents</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Scientific accuracy and neatness</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total Marks</td>
<td>4</td>
</tr>
</tbody>
</table>
2. **EXTERNAL EVALUATION**

Practical corresponding to each complementary course will be conducted during the corresponding semesters. A combined University practical examination related to the first four complementary theory courses (Practical I*A, I*B, I*C and I*D) will be held at the end of fourth semester. External evaluation carries 80% of (80 marks) the total marks (100 marks). External evaluation will be done by a team consisting of one internal examiner and one external examiner. Practical examination is of 4 hours duration.

Any candidate, who turns up for a practical examination, must submit a certified and bonafide record / report of work done by him/ her duly attested by the Teacher- in- charge and the Head of the Department at the time of practical examinations.

Table 5. Scheme of question paper for Complementary Practical

<table>
<thead>
<tr>
<th>Question Nos.</th>
<th>Nature of questions</th>
<th>Total no. of questions</th>
<th>Marks for each question</th>
<th>Marks</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>I : Q 1-6</td>
<td>Spotters: from various sections of courses: Identification/ sketches/ descriptions/ reasons /importance/ significance/ from Non chordata, Chordata, Histology, Osteology, Economic zoology etc.</td>
<td>6</td>
<td>3</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>II: Q 7</td>
<td>Minor expt.: from various courses - results/explanation/ sketches etc.</td>
<td>1 (as per choice)</td>
<td>9</td>
<td>9</td>
<td>4 hours</td>
</tr>
<tr>
<td>III: Q 8</td>
<td>Minor expt.: from various sections – (Non chordata/ Chordata/ physiology/ Immunology etc.) results/ explanation/ sketches etc.</td>
<td>1 (as per choice)</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>IV: Q 9</td>
<td>Major expt: from Non chordata/ Chordata/Physiology, Immunology etc.</td>
<td>1 (as per choice)</td>
<td>22</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>V: Record</td>
<td>Viva-voce</td>
<td>#3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V: Record</td>
<td>-</td>
<td>-</td>
<td>16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Marks 80

Viva voce – Examiner may ask questions based on the principles/methodology/concepts of the experiments performed during the practical examinations.
FIRST SEMESTER B.Sc. ZOOLOGY COMPLEMENTARY COURSE

Theory Course- I

ANIMAL DIVERSITY AND WILDLIFE CONSERVATION

Code: ZOL1C01T

[36 hrs] [2 hours/week] [3 credits]

COURSE OUTCOMES [COs]

<table>
<thead>
<tr>
<th>COs</th>
<th>Course Outcome Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Describe the general characters of protists and salient features of phylum – Rhizopoda, Ciliophora, Dinoflagellata and Apicomplexa (2 hrs)</td>
</tr>
<tr>
<td>CO2</td>
<td>Enumerate the salient features and examples of Phylum – Porifera, Coelenterata, Platyhelminthes, Aschelminthes, Annelida, Arthropoda, Onychophora, Mollusca and Echinodermata, and the structural organization of Penaeus sp. (14 hrs)</td>
</tr>
<tr>
<td>CO3</td>
<td>Describe the characteristic features and classification of phylum Chordata with examples and, structural organization of Oryctolagus cuniculus (14 hrs)</td>
</tr>
<tr>
<td>CO4</td>
<td>Explain levels of biodiversity, threats to biodiversity, biodiversity hotspots, importance and strategies for conservation of wildlife and sustainable development (6 hrs)</td>
</tr>
</tbody>
</table>

Question paper pattern for external examination

[Module: 1 Short answer 2x2=4marks
Module: 2 Short answer 3x2 = 6marks, Paragraph 3x5=15 marks; Essay1x10=10 marks
Module: 3 Short answer 3x2= 6 marks; Paragraph 3x5=15 marks; Essay1x10=10 marks
Module: 4 Short answer 4x2=8 marks, Paragraph 1x5=5marks]

MODULE 1. Kingdom Protista (2 hrs)

General characters.

Salient features of protozoans.

Phylum Dinoflagellata: e.g. Noctiluca
Phylum Ciliophora: e.g. Vorticella
Phylum Rhizopoda: e.g. Amoeba
Phylum Apicomplexa: e.g. Plasmodium (exclude life cycle)

[Short answers]

SECTION A: PROTISTA

MODULE 2: Animal diversity-Part I Nonchordata (14 hrs)

Salient features of phyla, classification down to classes (8 hrs)

Phylum Porifera: e.g. Leucosolenia
Phylum Coelenterata: e.g. Obelia, Aurelia, Sea anemone
Phylum Platyhelminthes: e.g: Fasciola, Schistosoma
Phylum Aschelminthes: e.g. Ascaris, Enterobius
Phylum Annelida: e.g: Arenicola, Hirudinaria, Megascolex
Phylum Arthropoda: e.g: Limulus, Sacculina, Eupagurus,
Phylum Onychophora: e.g: Peripatus
Phylum Mollusca: e.g. Perna, Teredo, Sepia, Pinctada
Phylum Echinodermata: e.g. Asterias, Holothuria, Sea urchin

Type: Penaeus sp. (Exclude details of larval stages) (6 hrs)

[Short answers/Paragraphs/Essays]
MODULE 3. Animal diversity-Part II Chordata (14 hrs)

Phylum Chordata: Salient features, Mention classes

Sub phylum Urochordata e.g. Ascidia
Subphylum Cephalochordata e.g. Branchiostoma

Subphylum Vertebrata:
 Div I. Agnatha e.g. Petromyzon, Myxine
 Div II: Gnathostomata
 Super class: Pisces
 Class: Chondrichthyes: e.g. Narcine
 Class: Osteichthyes: e.g. Echeneis, Hippocampus, Heteropneustes, Scomberomorus, Pomfret
 Super class: Tetrapoda
 Class Amphibia: e.g. Ichthyophis, Salamandra, Rhacophorus, Duttaphrynus, Mention - Nasikabatrachus sahyadrensis
 Class Reptilia: e.g. Chamaeleo, Chelone, Naja, Bungarus, Daboia
 Class Aves e.g. Columba
 Class Mammalia e.g. Pteropus

Type: Oryctolagus cuniculus (8 hrs)
External features, skeletal system, digestive system, respiratory system, circulatory system, sense organs and nervous system. [Exclude skin, skull bones, arterial system, venous system, lymphatic system, autonomous nervous system and endocrine system].

[Short answers/Paragraphs/Essays]

Section C: Conservation Biology

MODULE 4. Conservation Biology (6 hrs)

I. Biodiversity, Levels of biodiversity (brief), significance and uses of biodiversity, threats to biodiversity- (fragmentation, invasive species, over exploitation, poaching, climate change), extinction of species, concept of threatened species.

II Biodiversity hot spots, brief notes on hot spots that include Indian region (Western Ghats and Sri Lanka, Indo Burma, Himalayas and Sundaland); endemism.

IV Sustainable development (concept)

V. Red Data Book, IUCN, WWF (Brief account)

[Short answers/Paragraphs]

Topics for Assignments/Seminars
(Topics allotted for assignments/ seminars should be considered for internal assessments only, and can be subdivided among students)

1. Project Tiger
2. Project Elephant
3. Operation Rhino
4. Ramsar sites

REFERENCES

SECOND SEMESTER B.Sc. ZOOLOGY COMPLEMENTARY COURSE
Theory Course- II
ECONOMIC ZOOLOGY
Code: ZOL2C02T
[36 hrs] [2 hours/week] [3 credits]

COURSE OUTCOMES [COs]

<table>
<thead>
<tr>
<th>COs</th>
<th>Course Outcome Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Explain parasitism and the major protist, cestode, trematode and nematode parasites of man and major insect vectors of human diseases and their control (11 hrs)</td>
</tr>
<tr>
<td>CO2</td>
<td>Understand major beneficial and harmful insects, damages caused to host plants and their control measures (14 hrs)</td>
</tr>
<tr>
<td>CO3</td>
<td>Understand pisciculture, prawn, mussel and pearl culture (11 hrs)</td>
</tr>
</tbody>
</table>

Question paper pattern for external examination

[Module 1 Short answer 4x2=8 marks, Paragraph 3x5=15 marks
Module 2 Short answer 5x2 = 10 marks, Paragraph 2x5=10 marks; Essay1x10=10 marks
Module 3 Short answer 3x2=6 marks; Paragraph 2x5=10 marks; Essay1x10=10 marks]

MODULE 1: Parasitism in relation to man (11 hrs)

Introduction, classification of parasites and hosts (2 hrs)

Obligatory, facultative, external, internal, hyperparasites. Definitive, intermediate, carrier and reserve hosts. Infection and infestation - Mention Hyper infection and Auto infection. Modes of infection - Inoculative, contaminative, direct and retroinfection, zoonotic diseases

Human Parasites (5 hrs)

Parasitic Protists – *Plasmodium vivax*, *Entamoeba histolytica*
Cestodes – *Taenia solium*, mention *T. saginata* and *Echinococcus granulosus*
Trematodes (Flukes) – *Schistosoma haematobium*
Nematodes – *Ancylostoma duodenale*, *Wuchereria bancrofti* and *Enterobius vermicularis*

Vectors of human diseases (4 hrs)

Insect vectors of human diseases and their control. *Anophales*, *Culex*, *Aedes*, *Xenopsylla*, *Cimex*, *Pediculus* and *Phirus* (Diseases like malaria, filariasis, yellow fever, typhus fever, dengue, plague, chikungunya, kala azar).

[Short answers/Paragraphs]

MODULE 2. Useful Insects, Insect Pests and their control (14 hrs)

Insect Pests (9 hrs)

Definition of Pests, Kinds of Pests, Causes of pest outbreak.

Nature of damage to host plants and control measures of the following pests. (Exclude structure and Life history of Pests).

a) *Spodoptera* sp. (rice swarming caterpillar)
b) *Leptocorisa* sp. (rice bug)
c) *Rhynchophorus* sp. (red palm weevil)
d) *Opisina* sp. (Black headed caterpillar, mention biological control)
e) *Aceria* sp. (Coconut mite)
f) *Helopeltis* sp. (tea bug)
g) *Cosmopolites* sp. (Banana rhizome weevil)
h) *Bactrocera* sp. (Fruit fly)
i) *Batocera* sp. (mango stem borer)
j) *Sitophilus* sp. (rice weevil)

Insect Control
(2 hrs)
Basic principles of chemical control and biological control. Integrated Pest Management (IPM) (Brief notes).

Useful Insects
(3 hrs)
Apiculture, Sericulture & Lac culture: Economic importance. Predatory insects, insect parasitoids.

[Short answers/Paragraphs/Essays]

MODULE 3. Aquaculture and Fishery Biology (11 hrs)

Brief Introduction mentioning its scope in Kerala.
(1 hr)

Pisciculture
(5 hrs)
Egg collection and hatching, induced spawning. Nursery ponds, manuring, feeding and harvesting, Ornamental fish farming (brief account). Mention common species.
Fish utilization

Prawn Culture.
(2 hrs)
Breeding and spawning of prawns, seed collection and culture, types of prawn farms, mention common species.

** Mussel Farming**
(2 hrs)
Seed collection, artificial collection of seeds, induced spawning, rearing of larvae, farming methods and harvesting.

Pearl Culture
(1 hr)
Preparation of nuclei, preparation of host and graft tissue, implantation and nursing.

[Short answers/Paragraphs/Essays]

Topics for Assignments/Seminars
(Topics allotted for assignments/ seminars should be considered for internal assessments only, and can be subdivided among students)

2. *Eomenacanthus stramineus* (Chicken louse).
5. *Pediculus humanus* (head louse)

REFERENCES

THIRD SEMESTER B.Sc. ZOOLOGY COMPLEMENTARY COURSE
Theory Course- III

PHYSIOLOGY AND ETHOLOGY

Code: ZOL3C03T

[54 hrs] [3 hours/week] [2 credits]

COURSE OUTCOMES [COs]

<table>
<thead>
<tr>
<th>COs</th>
<th>Course Outcome Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Describe the structure of plasma membrane and the various trans-membrane transport mechanisms (3 hrs)</td>
</tr>
<tr>
<td>CO2</td>
<td>Enumerate the constituents of normal diet and the mechanism of digestion and absorption of carbohydrates, proteins and lipids and the regulation of gastrointestinal function (4 hrs)</td>
</tr>
<tr>
<td>CO3</td>
<td>Explain the mechanism of transport of respiratory gases, control of respiration, respiratory problems and artificial ventilation (6 hrs)</td>
</tr>
<tr>
<td>CO4</td>
<td>Explain the structure and working of human heart and mechanism of regulation of heart beat; constituents of human blood and blood transfusion and cardiovascular problems (7 hrs)</td>
</tr>
<tr>
<td>CO5</td>
<td>Illustrate the structure of human kidney, the mechanism of urine formation, hormonal control of kidney function and kidney disorders; osmoregulation and urea cycle (6 hrs)</td>
</tr>
<tr>
<td>CO6</td>
<td>Enumerate the structure of myofibrils and myofilaments; muscle contractile and regulatory proteins and mechanism of muscle contraction (7 hrs)</td>
</tr>
<tr>
<td>CO7</td>
<td>Explain different types of nerve cells and glial cells, maintenance of resting membrane potential, generation and propagation of action potential and synaptic transmission (7 hrs)</td>
</tr>
<tr>
<td>CO8</td>
<td>Describe innate behavior, learned behavior, patterns of behavior and factors that affect behavior (8 hrs)</td>
</tr>
<tr>
<td>CO9</td>
<td>Enumerate biological rhythms, communication in animals and social organization in mammals (6 hrs)</td>
</tr>
</tbody>
</table>

Question paper pattern for external examination

[Module 1-7 Short answer 9x2=18 marks, Paragraph 6x5=30 marks, Essay 1x10=10 marks
Module 8-9 Short answer 3x2 = 6 marks, Paragraph 1x5=5 marks; Essay1x10=10 marks]

Section A. PHYSIOLOGY (40 hrs)

MODULE 1. Trans-membrane transport mechanisms (3 hrs)
Structure of Plasma membrane. Fluid mosaic model. Trans-membrane transport - passive & active mechanisms, vesicular transport
[Short answers/Paragraphs]

MODULE 2. Nutrition (4 hrs)
Constituents of normal diet. Digestion of carbohydrates, proteins and lipids. Absorption of nutrients (brief account). Brief account on the neural and hormonal control of gastrointestinal function. BMR and obesity
[Short answers/Paragraphs]

MODULE 3. Respiration (6 hrs)
[Short answers/Paragraphs/Essays]
MODULE 4. Body fluids and circulation (7 hrs)
Constituents of human blood. Agglutination, coagulation of blood and haemostasis
Haemolysis. Blood transfusion (short notes). Brief account on the structure and
working of human heart. Pacemaker and conducting system of heart. Cardiac cycle
and regulation of heart beat. Blood pressure and pulse. Cardiovascular problems
(brief account) - arteriosclerosis and atherosclerosis, myocardial infarction,
hypertension and thrombosis.

[Short answers/Paragraphs/Essays]

MODULE 5. Osmoregulation and Excretion (6 hrs)
Osmoconformers and osmoregulators. Water retention and conservation in desert
animals. Urea cycle. Ammonotelism, ureotelism and uricotelism. Hormonal control
of kidney function. Kidney disorders, renal hypertension, nephritis and renal
failure. Dialysis and kidney transplantation (short notes)

[Short answers/Paragraphs/Essays]

MODULE 6. Muscle Physiology (7 hrs)
EM structure of myofibrils and myofilament. Muscle - contractile proteins and
major regulatory proteins. Chemistry and mechanism of muscle contraction.
Energy for muscle contraction. Muscle twitch and muscle tetanus, isometric and
isotonic contraction. All-or-none law and summation of stimuli. Muscle fatigue and
rigor mortis.

[Short answers/Paragraphs/Essays]

MODULE 7. Nerve physiology (7 hrs)
Mention different types of nerve cells and glial cells. Maintenance of resting
membrane potential; generation and propagation of action potential. Threshold
stimulus, all or none response. Synapse, types of synapses, synaptic transmission
and neurotransmitters.

[Short answers/Paragraphs/Essays]

Section B. ETHOLOGY (14 hrs)

MODULE 8. Behaviour (8 hrs)
Innate behaviour
Orientation, taxes and kinesis, simple reflexes and instincts, drive and motivation

Learned behaviour
Habituation, conditioned reflex, trial and error learning, latent learning, imprinting,
insight learning

Patterns of behaviour
Habitat selection, sexual selection, co-operation, territoriality, aggression,
courtship and agonistic behaviour.

Proximate factors
Neurological basis of behaviour, mention hormonal, biochemical, environmental
and genetic factors that influence behaviour.

[Short answers/Paragraphs/Essays]

MODULE 9: Biological clocks/rhythms (6 hrs)
Photoperiod, circadian rhythm, migration, navigation and homing instinct,
diapause, hibernation and aestivation. Communication in animals. Social
organization in mammals – Elephant as example

[Short answers/Paragraphs/Essays]
Topics for Assignments/Seminars
(Topics allotted for assignments/ seminars should be considered for internal assessments only, and can be subdivided among students)

1. Role of enzymes in digestion of Carbohydrates, proteins and lipids.
2. Absorption of carbohydrates, proteins, and lipids.
3. Problems of Alcoholism
5. Minamata disease

REFERENCES

FOURTH SEMESTER B.Sc. ZOOLOGY COMPLEMENTARY COURSE
Theory Course- IV
GENETICS AND IMMUNOLOGY
Code: ZOL4C04T
[54 hrs] [3 hours/week] [2 credits]

COURSE OUTCOMES [COs]

<table>
<thead>
<tr>
<th>COs</th>
<th>Course Outcome statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Describe human karyotype, chromosomal anomalies and polygenic inheritance (6 hrs)</td>
</tr>
<tr>
<td>CO2</td>
<td>Explain the mechanisms of sex determination (4 hrs)</td>
</tr>
<tr>
<td>CO3</td>
<td>Enumerate the concept of genes, gene expression, genetic code, transcription and translation (8 hrs)</td>
</tr>
<tr>
<td>CO4</td>
<td>Illustrate the mechanism of recombinant DNA technology and its practical applications (13 hrs)</td>
</tr>
<tr>
<td>CO5</td>
<td>Explain the types of cancer, causes of transformation and characteristics of transformed cells (5 hrs)</td>
</tr>
<tr>
<td>CO6</td>
<td>Identify the cells and organs of immune system, antigens and antibodies (7 hrs)</td>
</tr>
<tr>
<td>CO7</td>
<td>Enumerate antigen-antibody interaction, generation of B-cell and T-cell response and major immunotechniques (7 hrs)</td>
</tr>
<tr>
<td>CO8</td>
<td>Explain primary and secondary immunodeficiency diseases, autoimmune diseases, vaccination and vaccines (4 hrs)</td>
</tr>
</tbody>
</table>

Question paper pattern for external examination
[Module 1-5 Short answer 8x2=16 marks, Paragraph 5x5=25 marks, Essay 1x10=10 marks]
Module 6-8 Short answer 4x4= 8 marks, Paragraph 2x5=10 marks; Essay 1x10=10 marks]

Module 1. Human Genetics (6 hrs)

Module 2. Genetic Control of Sex (4 hrs)
Autosomes and sex chromosomes: Mention Barr body and its significance. Chromosomal mechanism of sex determination: genic balance theory. Control of sex; hormonal influence of sex determination; sex mosaics; gynandromorphism

Module 3. Genes and gene expression (8 hrs)
Modern concept of genes, split genes, pseudogenes, overlapping genes and transposons. Gene expression. Genetic code, transcription and translation (brief account)
MODULE 4. Genetic Engineering (13 hrs)
Brief account of recombinant DNA technology – role of enzymes (restriction endonucleases, exonucleases, DNA polymerase, DNA ligase, reverse transcriptase, alkaline phosphatase, polynucleotide kinase and terminal transferase). Cloning vectors – plasmid vectors (mention pBR322), phage vectors, cosmids, viruses and YAC vector. Construction of recombinant DNA (preparation of vector DNA and donor DNA, joining of vector and donor DNAs, introduction of recombinant DNA into the host cell and selection of transformants). Methods of gene transfer. Practical applications, advantages and potential hazards.

[Short answers/Paragraphs/Essays]

MODULE 5. Cytogenetics of Cancer (5 hrs)
Types of cancer: brief account of sarcomas, carcinomas, melanomas, leukemia, lymphomas and blastomas. Characteristics of cancer cells: uncontrolled multiplication, loss of contact inhibition, metastasis, reduced cellular adhesion, metaplasia, invasiveness, growth factor secretion, cell surface alterations, alterations in transcriptome and proteome and protease secretion. Origin of Cancer: Carcinogens, oncogenic viruses, polygenic basis, hereditary predisposition to cancer

[Short answers/Paragraphs]

Section B: IMMUNOLOGY (18 hrs)
(Brief account of the following topics)

MODULE 6. Cells and organs of immune system, antigens and antibodies (7 hrs)

Cells and organs of immune system
Innate and adaptive immunity. Cells of immune system- B cell, T cell, NK cell and Antigen Presenting Cells (dendritic cells, macrophage cells). Organs of the immune system- Primary lymphoid Organs (Thymus, Bone Marrow), Secondary lymphoid Organs (Spleen, lymph node, MALT)

Antigens

Antibodies
Structure, different classes and Function. Monoclonal antibodies-Hybridoma technology and applications.

[Short answers/Paragraphs/Essays]

MODULE 7. Antigen-Antibody interaction & Generation of B-cell and T-cell response (7 hrs)

Antigen - antibody interaction
Strength of Antigen-Antibody interaction. Cross reactivity, Precipitation reactions, and Agglutination reactions. Immunotechniques – Detection of biomolecules using ELISA, RIA, and Western blot. Southern blot, Northern blot and DNA Fingerprinting (Brief)
Generation of B cell and T-cell response:

[Short answers/Paragraphs]

MODULE 8. Immunodeficiency diseases, vaccines & vaccination (4 hrs)

Immunodeficiency diseases

Vaccines and Vaccination
Principle of vaccination; mention Attenuated vaccines, Inactivated vaccines, Toxoid vaccines and DNA vaccines.

[Short answers/Paragraphs/Essays]

Topics for Assignments/Seminars
(Topics allotted for assignments/ seminars should be considered for internal assessments only, and can be subdivided among students)

1. Human genome
2. DNA tumor viruses
3. Human genome project
4. Structure of immunoglobulins and T-cell receptors

REFERENCES
B.Sc. ZOOLOGY COMPLEMENTARY COURSE
PRACTICAL
Code: ZOL4C05P
[Practical I*A+I*B+I*C+I*D] [4 Credits]

COURSE OUTCOMES [COs]

<table>
<thead>
<tr>
<th>COs</th>
<th>Course Outcome statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Identify the salient features of the phylum; taxonomic position, habit, habitat, adaptations/importance of selected protists, non-chordates and chordates (36 hrs)</td>
</tr>
<tr>
<td>CO2</td>
<td>Describe major human parasites and economically important insects, molluscs and fishes (36 hrs)</td>
</tr>
<tr>
<td>CO3</td>
<td>Perform detection of human blood groups and prepare human blood smear as per laboratory standards; mounting of specialized organs of selected non-chordates and chordates, and demonstrate the presence of biomolecules in samples by standard laboratory protocols (36 hrs)</td>
</tr>
<tr>
<td>CO4</td>
<td>Illustrate the normal and selected abnormal human karyotypes and mode of inheritance of selected human genetic disorders and perform the dissection of earthworm and sardine to demonstrate the alimentary canal and Penaeus to demonstrate the nervous system (36 hrs)</td>
</tr>
</tbody>
</table>

FIRST SEMESTER COMPLEMENTARY COURSE [PRACTICAL I*A]
[36 hrs] [2 hrs/week]

A. Animal Diversity

Phylum Dinoflagellata: Noctiluca
Ciliophora: Vorticella
Porifera: Leucosolenia
Coelenterata: Obelia, Physalia, Rhizostoma (Any 2).
Platyhelminthes: Fasciola
Aschelminthes: Ascaris
Annelida: Chaetopterus / Arenicola, Hirudinaria.
Arthropoda: Eupagurus, Belostoma, Limulus, Sacculina (Any 3).
Onychophora: Peripatus
Mollusca: Chiton, Sepia/ Loligo, Octopus (Any 2)
Echinodermata: Asterias, Holothuria.

Chordata
Prochordates: Ascidia/ Branchiostoma.
Cyclostomata: Petromyzon.
Superclass: Pisces: Narcine, Echeneis, Hippocampus, Heteropneustes, Anguilla, Pomfret (Any 3)
Class Amphibia: Ichthyophis, Axolotl larva, Rhacophorus (Any 2)
Class Reptilia: Chamaeleo, Daboia, Bungarus
Class Aves: Columba
Class Mammalia: Pteropus or any other Bat.

B. Histology: Study of the T.S. of Hydra, Ascaris, Earthworm (through typhlosolic region).

C. Osteology: Dentition (Rabbit), Pectoral and Pelvic girdles, typical vertebra
REFERENCES

SECOND SEMESTER COMPLEMENTARY COURSE [PRACTICAL I *B]*

[36 hrs] [2 hrs/week]

Study of the following items

Parasites
Entamoeba, Plasmodium, Schistosoma, Taenia, Ancylostoma, Enterobius, Wuchereria, Hirudinaria, Cimex (Any 5).

Insect pests
Spodoptera, Leptocorisa, Oryctes, Rhynchophorus, Opisina; Batocera, Termite, Sitophilus (Any 5).

Useful insects
Apis (worker), Bombyx female (any one)

Ornamental fishes
Poecilia reticulata (guppy), Poecilia sphenops (Black molly), Carassius auratus (Gold fish), Puntius denisonii, Pterophyllum scalare (Angel fish), Colisa sp. (Gaurami), Betta sp. (Fighting fish), Danio malabaricus (Giant Danio) (Any three)

Culture fishes
Catla catla (Catla), Labeo rohita (Rohu), Cirrhinus mrigala (Mrigal), Ctenopharyngodon idellus (Grass Carp) (Any three)

Economically important items
Perna, Pinctada, Teredo, Loligo, Penaeus, Scoliodon, Sardinella, Rastrelliger, Cybium (Any 5).

REFERENCES

- “Commercial Fin Fishes and Shell Fishes of India”, The Marine Products Export Development Authority, Ministry of Commerce & Industry, Govt. of India.
THIRD SEMESTER COMPLEMENTARY COURSE [PRACTICAL I *C]
[36 hrs] [2 hrs/week]

Section A: Physiology
1. Blood smear preparation and study of RBC and different types of WBCs.
2. Human blood grouping – ABO and Rh systems.
3. Detection of monosaccharides, polysaccharides, proteins & lipids.

Section B: Mounting
1. Earth worm: Setae in situ (minor), Spermatheca (minor)
2. Penaeus: Appendages (minor)
4. Honeybee: Mouth parts (minor).
5. Shark: Placoid scales (minor).

REFERENCES

FOURTH SEMESTER COMPLEMENTARY COURSE [PRACTICAL I *D]
[36 hrs] [2 hrs/week]

Section A: Dissections
Earthworm: Alimentary canal upto 25th segment (minor)
Penaeus: Nervous system (major)
Sardinella: Alimentary canal (major)

Section B: Genetics
Study of the following (use slides/ models / charts / photographs)
1. Study of sex linked inheritance (haemophilia, sickle cell anaemia, color blindness)
2. Study of normal human karyotype (male and female) and abnormal karyotypes – Down’s syndrome, Klinefelter’s syndrome, Turners syndrome, Edwards syndrome (Any two)

REFERENCES

MODEL QUESTION PAPER
FIRST SEMESTER B.Sc. DEGREE EXAMINATION
(CBCSS –UG)
Zoology: Core course
ZOL1B01 - ANIMAL DIVERSITY: NON-CHORDATA PART- I

Time: Two Hours Maximum: 60 Marks

Section A

I. Short answer questions. Each question carries 2 marks.
1. What is cladistics?
2. Explain molecular systematics.
3. Enumerate the eight kingdom classification.
5. Explain mutualism with reference to Trychonympha.
6. Describe the characteristic features of Rhopalura.
7. What is gemmule? Mention its significance.
8. What are comb jellies?
9. Comment on measly pork.
10. Write a short account on the salient features of Phylum Gastrotricha.
11. What is wheel organ?
12. Differentiate between filariasis and elephantiasis.

(Ceiling: 20 marks)

Section B

II. Paragraph questions. Each question carries 5 marks
14. Describe the types and mechanisms of coelome formation.
15. Explain the various systems of nomenclature.
16. Write a brief account on the canal system in sponges.
17. Explain metagenesis with reference to Obelia
18. With a labeled diagram explain the digestive system of Dugesia.
19. Explain the salient features of Nemotdes.

(Ceiling: 30 marks)

Section C

III. Essay questions. Answer any one question.
20. Explain the process of conjugation in Paramecium.
21. Write an essay on polymorphism in Cnidarians.

(1x10 = 10 marks)
MODEL QUESTION PAPER
SECOND SEMESTER B.Sc. DEGREE EXAMINATION
(CBCSS –UG)
Zoology: Core course
ZOL2B02 - ANIMAL DIVERSITY: NON-CHORDATA PART – II

Time: Two Hours Maximum: 60 Marks

Section A

I. Short answer questions. Each question carries 2 marks.
1. Comment on heteronereis
2. What is parasitic castration?
3. Write an account on Trilobites.
4. Explain the features of trophophore larva.
5. Write a note on the peculiarities of *Troides minos*.
7. Write the branchial formula of *Penaeus indicus*.
8. What is osphradium? Mention its function.
9. Discuss the salient features of Phylum Phoronida.
10. Explain the peculiarities of *Bonellia*.
11. Write a note on the salient features of Ectoprocta.
12. What is evisceration?

(Ceiling: 20 marks)

Section B

II. Paragraph questions. Each question carries 5 marks
13. Explain the respiratory system of *Pila globosa*.
14. Write a note on the salient features of class Clitellata
15. Explain the salient features of class Merostomata with a suitable example.
16. Describe the digestive system of *Neanthes*.
17. Write an account on the affinities of *Peripatus*.
18. Explain the salient features of Cephalopoda with a suitable example.
19. Describe the affinities of *Balanoglossus*.

(Ceiling: 30 marks)

Section C

III. Essay questions. Answer any one question.
20. Write an essay on the appendages of *Penaeus indicus*.
21. With a suitable diagram describe the water vascular system of starfish.

(1x10 = 10 marks)
MODEL QUESTION PAPER
THIRD SEMESTER B.Sc. DEGREE EXAMINATION
(CBCSS –UG)
Zoology: Core course
ZOL3B03 - ANIMAL DIVERSITY: CHORDATA PART - I

Time: Two Hours Maximum: 60 Marks

Section A

I. Short answer questions. Each question carries 2 marks.
1. Explain retrogressive metamorphosis.
2. What is paedogenesis?
3. Describe the structure of pharynx of Ascidia.
4. Explain the classification of Phylum Chordata down to classes.
5. Write the salient features of Agnatha.
6. Explain the peculiarities of Ammocoetes larva.
7. Illustrate the distribution of lung fishes.
8. Comment on the 9th vertebra of Frog.
9. What is neurotoxic snake venom? Give an example.
10. Describe the distribution of sphenodon.
11. Write a note on synapsida.
12. Give the scientific name of any four venomous snakes of Kerala.

(Ceiling: 20 marks)

Section B

II. Paragraph questions. Each question carries 5 marks
13. Give an account on urinogenital system of Mullet.
14. Write an account on Latimeria.
15. Describe the respiratory system of Hoplobatrachus tigerinus.
16. Explain the affinity of Urochordates with Cephalochordates and Vertebrates.
17. Give an account on the morphology of Amphioxus.
18. Write the identification key for venomous and non-venomous snakes.
19. Distinguish between Osteichthyes and Chondrichthyes.

(Ceiling: 30 marks)

Section C

III. Essay questions. Answer any one question.
20. Give an account on the Arterial system of Calotes.
21. Write the salient features of class Amphibia and classify down to order, giving specific features with examples.

(1x10 = 10 marks)
MODEL QUESTION PAPER
FOURTH SEMESTER B.Sc. DEGREE EXAMINATION
(CBCSS –UG)
Zoology: Core course
ZOL4B04 - ANIMAL DIVERSITY: CHORDATA PART-II

Time: Two Hours Maximum: 60

Marks

Section A

I. Short answer questions. Each question carries 2 marks.
1. List out the characteristic features of Order Monotremata.
2. What is synsacrum? Comment on its composition.
3. Comment on Cursorius bitorquatus.
4. What is a brood parasite?
5. Write an account on any two extinct birds.
6. Briefly explain the salient features of super order Paleognathae.
7. What is dental formula? Write the dental formula of Oryctolagus cuniculus.
8. What is coprophagy?
9. Write an account on Golden Mole of South Africa.
10. Distinguish between an Indian and an African elephant.
11. What is metanephric kidney?
12. Write an account on meninges.

(Ceiling: 20 marks)

Section B

II. Paragraph questions. Each question carries 5 marks
13. Explain the respiratory system of Columba livia.
14. Write a note on the evolutionary significance of Archaeopteryx lithographica.
15. With a labeled diagram explain the pelvic girdle of Oryctolagus cuniculus.
16. Write notes on the adaptations of Chiropterans.
17. Discuss the peculiarities of Order Marsupialia.
18. Explain the salient features of Order Cetacea with examples.
19. Compare the circulatory systems of Class Amphibia and Reptilia.

(Ceiling: 30 marks)

Section C

III. Essay questions. Answer any one question.
20. Explain the flight adaptations of birds.
21. Describe the digestive system of Oryctolagus cuniculus.

(1x10 = 10 marks)
MODEL QUESTION PAPER
FIFTH SEMESTER B.Sc. DEGREE EXAMINATION
(CBCSS –UG)
Zoology: Core course
ZOL5B06T – CELL BIOLOGY AND GENETICS

Time: 2.5 Hrs
Maximum: 80 Marks

Section A

I. Short answer questions. Each question carries 2 marks.
1. What is camera lucida? Mention its use.
2. Write a note on apoptosis.
3. Explain the significance of membrane fluidity.
4. Write a note on the structural organization of microtubules.
5. Explain the concept of GERL.
6. Describe the biogenesis of mitochondria.
7. How will you demonstrate the presence of proteins in tissue sections?
8. What are modifying genes? Give an example.
9. Write a note on disorders of sexual development.
10. Explain dosage compensation.
11. Write a short note on chromosomal mutations.
12. Explain sex chromosomal mutations with suitable examples.
13. What is gynandromorphism?
14. Comment on eugenics?
15. Explain environmental influence on sex determination with a suitable example.

Section B

II. Paragraph questions. Each question carries 5 marks
16. Describe the principle and applications of electron microscope.
17. Explain the structural organization of chromatin.
18. You are provided with a tissue sample. How will you process it for light microscopy.
19. Describe polygenic inheritance with a suitable example.
20. Explain incomplete linkage with an example.
21. What are gene mutations? Comment on different types of gene mutations.
22. Explain the Patau’s scheme of classification of human chromosomes.
23. Illustrate the modifications of plasma membrane.

Section C

III. Essay questions. Answer any two questions
24. Explain meiosis with the help of labelled diagrams.
25. Describe the various mechanisms of sex determination.
26. Write an essay on trans-membrane transport.
27. Explain multiple allelism with a suitable example.

(Ceiling: 25 marks)

(Ceiling: 35 marks)

(2x10 = 20 marks)
MODEL QUESTION PAPER
FIFTH SEMESTER B.Sc. DEGREE EXAMINATION
(CBCSS –UG)
Zoology: Core course
ZOL5B07T – BIOTECHNOLOGY, MICROBIOLOGY AND IMMUNOLOGY

Time: 2.5 Hrs Maximum: 80 Marks

Section A

I. Short answer questions. Each question carries 2 marks.
1. Explain the structure of Yeast Artificial Chromosome.
2. Comment on knockout mice.
3. What are molecular markers? Mention their applications.
4. Write an account on viral vaccines.
5. What is Gram staining? Mention its application.
6. Comment on different types of bacterial culture.
7. Write a note on various types of oncogenic viruses.
8. Comment on interferons.
9. Write a note on the normal microflora of the human body.
10. What are adjuvants? Explain Freund’s adjuvant.
11. Comment on cytokines.
12. Explain autoimmune disease with an example.
13. What are transplantation antigens? Mention their role in graft rejection.
14. Write a note on immune response to tumor antigens.
15. Differentiate between primary and secondary immunodeficiency diseases.

(Ceiling: 25 marks)

Section B

II. Paragraph questions. Each question carries 5 marks
16. Explain the steps in the production of monoclonal antibodies.
17. Write an account on the various methods of transfection.
18. Comment on the various methods of sterilization.
19. Differentiate between lysogenic and lytic phages.
20. Write an account on various culture preservation techniques.
21. Add notes on primary organs of the immune system.
22. What is immunization? Add notes on various vaccines.
23. With the help of a labeled diagram explain the structure of HIV.

(Ceiling: 35 marks)

Section C

III. Essay questions. Answer any two questions.
24. Explain the various steps in the construction of recombinant DNA.
25. Give a brief account on the structure of immunoglobulin and mention its classification.
26. Write an essay on the applications of biotechnology.
27. Explain the industrial applications of microorganisms.

(2x10 = 20 marks)
MODEL QUESTION PAPER

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION
(CBCSS –UG)
Zoology: Core course
ZOL5B08T – BIOCHEMISTRY AND MOLECULAR BIOLOGY

Time: 2.5 Hrs Maximum: 80 Marks

Section A

I. Short answer questions. Each question carries 2 marks.
1. Write a short note on Hydrogen bonding.
2. What are glycosidic bonds?
3. Enumerate the biological functions of carbohydrates.
4. What are peptide bonds?
5. Explain the clinical significance of lipid profile estimation.
6. Differentiate between glycogenesis and gluconeogenesis.
7. Explain oxidative phosphorylation.
8. Illustrate the central dogma.
10. Describe the role of tRNA in translation.
11. What are amino acyl tRNA synthetases? Mention their function.
12. Write an account on the active centers of ribosomes.
13. Explain RNA interference.
14. What is c-value paradox?
15. Explain transduction.

(Ceiling: 25 marks)

Section B

II. Paragraph questions. Each question carries 5 marks
17. Write an account on the classification of enzymes.
18. Explain the β oxidation of fatty acids.
19. Write a note on amino acid oxidation.
20. Explain the properties of genetic code.
21. Write a note on the post translational modification of the peptide chain.
22. Explain the positive control of trp operon.
23. Briefly explain the life cycle of a temperate phage.

(Ceiling: 35 marks)

Section C

III. Essay questions. Answer any two questions.
24. Write an essay on the hierarchial levels of protein structure.
25. Describe the Watson – Crick model of DNA.
26. Explain the mechanism of replication of DNA.
27. Write an essay on the post transcriptional processing of hnRNA

(2x10 = 20 marks)
MODEL QUESTION PAPER
FIFTH SEMESTER B.Sc. DEGREE EXAMINATION
(CBCSS–UG)
Zoology: Core course
ZO5B09T – METHODOLOGY IN SCIENCE, BIOSTATISTICS AND BIOINFORMATICS
Time: 2.5 Hrs
Maximum: 80 Marks

Section A
I. Short answer questions. Each question carries 2 marks.
1. Give a short account on Gen Bank.
2. Expand the abbreviations of (1) BLAST & (2) FASTA.
3. What is the principle behind microarray?
4. Define metabolomics.
5. Distinguish cladistics and ontogeny.
6. What is Empiricism?
7. Differentiate auxiliary and adhoc hypothesis.
8. What is virtual testing? Comment on its importance in experiments.
9. Write notes on primary depository of scientific information.
10. Comment on Plagiarism.
11. Differentiate between primary and secondary data.
12. What are the different types of kurtosis?
13. Differentiate between census and sampling.
15. Explain the advantages and disadvantages of standard deviation.

Section B
II. Paragraph questions. Each question carries 5 marks
16. Give an account on Database Search Engines.
17. Explain briefly about types of sequence alignment.
18. What is phylogenetics? Give account on phylogenetic tree construction methods.
19. Discuss in detail about Sanger’s method of DNA sequencing.
20. Explain various thought process in developing hypothesis.
21. Write notes on prevention of cruelty to animal act.
22. The average marks secured by 40 students were found to be 100. It was later found that one figure was wrongly read as 59 instead of the correct value of 67. Find the correct mean of marks?
23. Calculate Mean and SE of the following data.

<table>
<thead>
<tr>
<th>Marks x</th>
<th>10-20</th>
<th>20-30</th>
<th>30-40</th>
<th>40-50</th>
<th>50-60</th>
<th>60-70</th>
<th>70-80</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Section C
III. Essay questions. Answer any two questions.
24. Write an essay on Biological databases, highlighting any three biological databases.
25. Discuss in detail about principle and procedure involved in proteomics. What is protein-protein interaction mapping?
26. Give an account on principles and procedure of designing an experiment.
27. Certain manure was used on four plots of land A, B, C and D.
 The output of the crop in the beds of plots A, B, C and D is given below. Check the difference in crop production by using ANOVA.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>15</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

(2x10 = 20 marks)
MODEL QUESTION PAPER
FIFTH SEMESTER B.Sc. DEGREE EXAMINATION
(CBCSS –UG)
Zoology-Open Course
ZOL5D01- REPRODUCTIVE HEALTH AND SEX EDUCATION

Time: Two Hours Maximum: 60 Marks

Section A

I. Short answer questions. Each question carries 2 marks.
1. What is Barr body? Mention its significance.
3. What is spermatogenesis?
4. What are the accessory structures of Male reproductive system?
5. Differentiate GIFT and ZIFT.
6. Distinguish between Vasectomy and Tubectomy.
7. What is POSCO Act 2012?
8. Write a note on Gonorrhea? How it is transmitted?
10. What is Gender discrimination?
11. Comment on Trichomonal vaginitis?
12. Give the symptoms of Syphilis.

Section B

II. Paragraph questions. Each question carries 5 marks
13. Discuss various sex determination mechanisms in animals.
14. Explain spermatogenesis.
15. With the help of a neatly labeled diagram explain the structure of Graafian follicle.
16. What is prenatal diagnosis? Briefly describe amniocentesis and chorionic villus sampling.
17. Briefly describe the various fertility control methods.
18. Explain how to maintain healthy relationship with opposite sex.
19. Discuss the causes, symptoms, transmission and diagnosis of AIDS.

Section C

III. Essay questions. Answer any one question.
20. Discuss the various technologies used to solve infertility problems.

(1x10=10 marks)
MODEL QUESTION PAPER

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION
(CBCSS –UG)

Zoology: Open course

ZOL5D02T - NUTRITION, HEALTH AND HYGIENE

Time: Two Hours Maximum: 60 Marks

Section A

I. Short answer questions. Each question carries 2 marks.
1. Differentiate between arteriosclerosis and atherosclerosis.
2. What is haemotoxic venom? Give examples.
4. Comment on factors affecting food selection.
5. Explain protein energy malnutrition with a suitable example.
6. Differentiate between saturated and unsaturated fatty acids.
7. What are essential amino acids? Give examples.
8. Explain the physiological roles of dietary minerals.
10. Describe the physiological effects of alcohol abuse.
11. What is hygiene? Explain different types of hygiene.
12. Explain the relation between food, nutrients and health.

(Ceiling: 20 marks)

Section B

II. Paragraph questions. Each question carries 5 marks
13. What is BMR? Mention the factors affecting it.
14. Write a note on metabolism of carbohydrates.
15. Explain the physiological roles of vitamins.
16. Write a short note on meal planning and its significance.
17. Describe the dietary management of peptic ulcer and diarrhea.
18. Write an account on STDs with suitable examples
19. Explain the first aid for road accidents and drowning.

(Ceiling: 30 marks)

Section C

III. Essay questions. Answer any one question.
20. Write an essay on the mechanism of digestion of carbohydrates, proteins and fats.
21. Give a short account on various communicable bacterial, viral and protozoan diseases of man.

(1x10 = 10 marks)
MODEL QUESTION PAPER
FIFTH SEMESTER B.Sc. DEGREE EXAMINATION
(CBCSS –UG)
Zoology: Open course
ZOL5D03T – APPLIED ZOOLOGY

Time: Two Hours Maximum: 60 Marks

Section A

I. Short answer questions. Each question carries 2 marks.
1. Write a note on Leptocorisa acuta.
2. Review sandflies as vectors of human diseases.
3. Comment on Sitophilus oryzae.
4. Give an account on honey bee products.
5. Comment on the nutritive value of eggs.
6. Explain commensalism with a suitable example.
7. What is kala azar?
8. Write a short note on cycle of Ross.
9. What is foot and mouth disease?
10. Write a note on Indian breeds of cattle.
11. Give an account on embryo transfer technology.
12. What is vermiwash? Mention its significance.

(Ceiling: 20 marks)

Section B

II. Paragraph questions. Each question carries 5 marks
13. Discuss mosquitoes as vectors of human diseases.
14. Write an account on the nature of damage caused and control measures of Rhynchophorus ferrugineus.
15. Write a note on rearing of Bombyx mori and the mechanism of extraction of silk.
16. Explain the various steps in pearl culture.
17. Describe the various breeds of fowl.
18. Discuss Entamoeba histolytica as a human parasite.
19. Explain the life cycle of Taenia solium.

(Ceiling: 30 marks)

Section C

III. Essay questions. Answer any one question.
20. Write an essay on various methods of insect pest management.
21. Describe the methods in lac culture. Add a note on economics of lac products.

(1x10 = 10 marks)
MODEL QUESTION PAPER

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION
(CBCSS –UG)

Zoology: Core course

ZOL6B10- PHYSIOLOGY AND ENDOCRINOLOGY

Time: Two Hours Maximum: 60 Marks

Section A

I. Short answer questions. Each question carries 2 marks.

1. What is balanced diet?
2. Distinguish between neurogenic and myogenic heart.
3. Differentiate osmoconformers and osmoregulators.
5. What are respiratory pigments? Name the blue coloured respiratory pigment present in Arthropods and Molluscs.
6. What are neurotransmitters? Give one example each for excitatory and inhibitory neurotransmitters.
7. Differentiate arteriosclerosis and atherosclerosis.
8. Give any two functions of testosterone.
9. What is diabetes insipidus? How is it caused?
10. Which hormone is called “fight or flight hormone”? Name the gland that secretes it.
11. What is exophthalmic goitre? How is it caused?
12. Differentiate between gonadial hormones and gonadotrophic hormones with examples.

(Ceiling: 20 marks)

Section B

II. Paragraph questions. Each question carries 5 marks

13. Explain the osmoregulatory mechanisms in fresh water and marine animals.
14. Give a brief notes on coagulation of blood.
16. Write notes on physiology and significance of bioluminescence in organisms.
17. What is ornithine cycle? Explain.
18. Explain the role of sex hormones in menstrual cycle.
19. Describe role of hormones in insect metamorphosis.

(Ceiling: 30 marks)

Section C

III. Essay questions. Answer any one question.

20. Describe the physiology and chemistry of the muscle contraction.
21. What are neurons? Describe the physiology involved in the transmission of nerve impulses.

(1x10 = 10 marks)
MODEL QUESTION PAPER
SIXTH SEMESTER B.Sc. DEGREE EXAMINATION
(CBCSS –UG)
Zoology: Core course
ZOL6B11- REPRODUCTIVE AND DEVELOPMENTAL BIOLOGY

Time: Two Hours Maximum: 60 Marks

Section A

I. Short answer questions. Each question carries 2 marks.
1. Enlist the hormones and their role in lactation.
2. Explain ZIFT and GIFT.
3. What are homeotic genes? Explain their significance.
4. Differentiate between arrehnotoky and thelytoky.
5. Define capacitation of sperm.
6. What is embryonic induction?
7. Mention 4 important functions of Allantois.
8. Explain cell lineage.
9. Describe the process of implantation in man.
10. Define fate map. Draw the fate map of Frog blastula.
11. Define teratogenesis. Explain the effects of nicotine and alcohol.
12. Explain the theory of epigenesis.

(Ceiling: 20 marks)

Section B

II. Paragraph questions. Each question carries 5 marks
14. With the help of a neatly labeled diagram explain the structure of Graafian follicle.
15. What is prenatal diagnosis? Briefly describe amniocentesis and chorionic villus sampling.
16. With labelled diagram, describe the salient features of 33 hour chick embryo.
17. Describe the hormonal control of amphibian metamorphosis.
18. Give an account of Spemann’s constriction experiments.
19. With reference to Drosophila, explain the role of genes in development.

(Ceiling: 30 marks)

Section C

III. Essay questions. Answer any one question
20. What is cleavage? Write an essay on the different types cleavages with suitable examples.
21. Describe the development of brain in frog embryo.

(1x10 = 10 marks)
MODEL QUESTION PAPER
SIXTH SEMESTER B.Sc. DEGREE EXAMINATION
(CBCSS –UG)
Zoology: Core course
ZOL6B12 – ENVIRONMENTAL AND CONSERVATION BIOLOGY

Time: Two Hours
Maximum: 60 Marks

Section A

I. Short answer questions. Each question carries 2 marks.
1. Explain ecotone and edge effect.
2. Write a note on adaptations of animals of rocky shore.
3. Differentiate between primary and secondary productivity.
4. Mention the components of an ecosystem.
5. Enumerate the faunal characteristics of animals of lotic habitats.
6. Write a short account on ecological succession.
7. Explain commensalism with a suitable example.
8. What is proto-cooperation? Give an example.
9. Explain remote sensing and its applications in ecological studies.
10. Write notes on Ramsar convention.
11. Give a short account on various toxicants that cause health hazards.
12. Write a note on Rio convention on biodiversity.

(Ceiling: 20 marks)

Section B

II. Paragraph questions. Each question carries 5 marks
13. Give a detailed account on the energy flow in an ecosystem.
14. Explain the different types of population growth forms.
15. Write a note on the properties of a population.
16. Explain habitat destruction and its consequences.
17. Describe the various mechanisms employed for trapping and collection of insects.
18. Explain the major threats to biodiversity.
19. Write an account on hot spots of biodiversity.

(Ceiling: 30 marks)

Section C

III. Essay questions. Answer any one question.
21. Explain the strategies for the conservation of biodiversity.

(1x10 = 10 marks)
MODEL QUESTION PAPER
SIXTH SEMESTER B.Sc. DEGREE EXAMINATION
(CCBS -UG)
Zoology: Core course
ZOL6B13 – ETHOLOGY, EVOLUTION AND ZOOGEOGRAPHY

Time: Two Hours
Maximum: 60 Marks

Section A

I. Short answer questions. Each question carries 2 marks.
1. Explain innate behaviour with suitable examples.
2. Describe photoperiodism.
3. What are pheromones? Mention their biological roles.
4. Write a note on navigation and homing.
5. Explain punctuated equilibrium.
6. Describe natural selection with suitable examples.
7. Write a note on Neo-Darwinism.
8. What are living fossils? Give examples.
9. Describe Lamarck’s theory of evolution.
10. Write a brief note on Wallace line.
11. Distinguish between continental and oceanic islands.
12. Write the faunal characteristics of Australian region.

(Ceiling: 20 marks)

Section B

II. Paragraph questions. Each question carries 5 marks
13. Write a note on various patterns of behaviour.
14. Explain the role of hypothalamus in the control of behaviour.
15. Write a brief account on the evolution of man.
16. Explain adaptive radiation with suitable examples.
17. Describe the isolating mechanisms and their role in speciation.
18. Explain Hardy-Weinberg Equilibrium and the factors that upset it.
19. Give an account of various barriers in animal distribution.

(Ceiling: 30 marks)

Section C

III. Essay questions. Answer any one question.
21. Write an essay on evidences of organic evolution.

(1x10 = 10 marks)
MODEL QUESTION PAPER
SIXTH SEMESTER B.Sc. DEGREE EXAMINATION
(CCBS – UG)
Zoology: Core course (Elective)
ZOL6B14(E)01 – HUMAN GENETICS

Time: Two Hours Maximum: 60 Marks

Section A

I. Short answer questions. Each question carries 2 marks.
1. Write a note on FISH.
2. Explain non-disjunction of chromosomes.
3. Give an account on Ehler’s Danlos syndrome.
4. Write an account on maternal effect genes.
5. Explain the inheritance of intelligence.
6. Comment on alzheimer’s disease.
7. What is genomic imprinting?
8. Explain genetic counselling.
9. Comment on consanguinity.
10. Describe karyotyping
11. Write a short note on Indian Genome Variation Initiative.
12. What is phenocopy?

(Ceiling: 20 marks)

Section B

II. Paragraph questions. Each question carries 5 marks
13. Describe the classification and nomenclature of human chromosomes.
14. Write a note on autosomal recessive human disorders.
15. Explain the construction of pedigree.
16. Briefly explain X-linked dominant and recessive human disorders.
17. Explain the structural modifications of human chromosomes and their phenotypic effects.
18. Describe the biology of twinning and method of analysis of twin data.
19. Write a note on errors in sexual development.

(Ceiling: 30 marks)

Section C

III. Essay questions. Answer any one question.
20. Explain the various chromosome banding techniques.
21. Write an essay on various prenatal diagnostic techniques.

(1x10 = 10 marks)
MODEL QUESTION PAPER
SIXTH SEMESTER B.Sc. DEGREE EXAMINATION
(CBCSS –UG)
Zoology: Core course (Elective)
ZOL6B14(E)02 - AQUACULTURE, ANIMAL HUSBANDRY AND POULTRY SCIENCE

Time: Two Hours

Maximum: 60 Marks

Section A

I. Short answer questions. Each question carries 2 marks.
1. Write the names of any four aquarium fishes.
2. Explain pokkali culture
3. Write a note on aquarium management.
4. Comment on mud banks.
5. What is chitosan? Mention its uses
6. Explain white revolution.
7. What is isinglass?
8. Write a note on the adulteration of milk.
9. Give an account on the common diseases of cattle.
10. Explain zoonotic diseases with a suitable example.
11. Describe the formulation of poultry feeds.
12. Enumerate the common diseases of poultry.

(Ceiling: 20 marks)

Section B

II. Paragraph questions. Each question carries 5 marks
13. Write a short account on various types of aquaculture.
14. Explain the various steps in pisciculture.
15. Describe the biology and culture of Indian major carps.
16. Write an account on fish preservation techniques.
17. Write a short account on the breeds of fowl.
18. Explain the various steps in the processing of milk.
19. Describe the various breeds of cattle.

(Ceiling: 30 marks)

Section C

III. Essay questions. Answer any one question.
20. Explain the various steps in pearl culture.
21. Write an essay on fishing crafts and gears.

(1x10 = 10 marks)
MODEL QUESTION PAPER
SIXTH SEMESTER B.Sc. DEGREE EXAMINATION
(CBCSS –UG)
Zoology: Core course (Elective)
ZOL6B14(E)03 - APPLIED ENTOMOLOGY

Time: Two Hours Maximum: 60 Marks

Section A

I. Short answer questions. Each question carries 2 marks.
1. Explain the pest status of *Xylotrechus quadripes*.
2. Write a note on types of silkworms.
3. Briefly explain the processing and extraction of silk.
4. Mention the control measures of *Saissetia nigra*.
5. Write a short account on honey bee products and their uses.
6. Explain the damage caused by *Odoiporus longicollis*.
7. Write a note on pheromonal control of insects.
8. Name three pests of domestic animals.
9. What is moriculture?
10. Explain the control measures of *Raphidopala foveicollis*.
11. Name any three insecticide appliances.
12. Discuss the damages caused and control measures of *Toxoptera aurantii*

(Ceiling: 20 marks)

Section B

II. Paragraph questions. Each question carries 5 marks
13. Describe the damage caused and control measures of *Chilo infuscatellus* and *Scirpophaga novella*.
14. Write notes on the damage caused by *Nilaparvata lugens* and *Cnaphalocrocis medinalis*.
15. Discuss in detail any three important biological control projects undertaken in India.
16. Write an account on integrated pest management. Mention its advantages.
17. Give an account on the economic value and ecological services provided by insects.
18. Discuss the damages and control measures of *Tribolium castaneum* and *Callasobruchus chinensis*.
19. Write a note on lac culture.

(Ceiling: 30 marks)

Section C

III. Essay questions. Answer any one question.
20. Write an essay on the life cycle, damage caused and control measures of any three insect pests of coconut.
21. Describe the chemical control of insect pests. Mention its merits and demerits

(1x10 = 10 marks)
MODEL QUESTION PAPER
FIRST SEMESTER B.Sc. DEGREE EXAMINATION
(CCBS -UG)
Zoology: Complementary course
ZOL1C01 - ANIMAL DIVERSITY AND WILDLIFE CONSERVATION

Time: Two Hours Maximum: 60 Marks

Section A

I. Short answer questions. Each question carries 2 marks.
1. Describe the salient features of phylum Dinoflagellata with a suitable example.
2. Comment on *Plasmodium vivax* as a human pathogen.
3. What is gemmule?
4. Explain mutualism with respect to sea anemone.
5. Write a note on biodiversity hotspots.
6. What is Red Data book?
7. Write a short account on pearl formation.
8. Explain the adaptations of *Echeneis*.
10. Explain the adaptations of *Rhacophorus*.
11. What is neurotoxic venom? Give an example
12. Explain sustainable development.

(Ceiling: 20 marks)

Section B

II. Paragraph questions. Each question carries 5 marks
13. Write a note on the evolutionary significance of *Peripatus*.
14. Explain metagenesis with respect to *Obelia*.
15. Write a note on the parasitic adaptations of *Fasciola*.
16. Explain the structure of typical vertebra of Rabbit with labeled diagram.
17. Describe the salient features of subphylum Urochordata with a suitable example.
18. Write a note on the adaptations of *Pteropus*.
19. Describe the various threats to biodiversity.

(Ceiling: 30 marks)

Section C

III. Essay questions. Answer any one question.
20. Explain the salient features and classification of phylum Annelida down to classes with example from each class.
21. With a neat labelled diagram, describe structure of heart of *Oryctolagus*.

(1x10 = 10 marks)
MODEL QUESTION PAPER
SECOND SEMESTER B.Sc. DEGREE EXAMINATION
(CBCSS –UG)
Zoology: Complementary course
ZOL2C02 – ECONOMIC ZOOLOGY

Time: Two Hours
Maximum: 60 Marks

Section A

I. Short answer questions. Each question carries 2 marks.
1. What is ancylostomiasis?
2. Differentiate between infection and infestation
3. What are zoonotic diseases?
4. What is bladder worm?
5. Discuss the damages caused and control measures of coconut mite.
6. What is induced spawning? Mention its application.
7. Discuss the damages caused by Spodoptera sp.
8. What are the different types of prawn farms?
9. Explain the control measures of Cosmopolites sp.
10. What are insect parasitoids?
11. Comment on Sitophilus sp.
12. Name the common cultivable prawn species.

(Ceiling: 20 marks)

Section B

II. Paragraph questions. Each question carries 5 marks
13. Discuss mosquitoes as vectors of human diseases.
14. Write a note on Wuchereria bancrofti.
15. Comment on Plasmodium vivax as a human pathogen.
16. Write a short note on integrated pest management.
17. Give an outline classification of pests and the causes of pest outbreak.
18. Write a short account on pearl culture.
19. Comment on common cultivable ornamental fishes.

(Ceiling: 30 marks)

Section C

III. Essay questions. Answer any one question.
20. Explain the various insect pest management strategies.
21. Describe the various steps in pisciculture.

(1x10 = 10 marks)
MODEL QUESTION PAPER
THIRD SEMESTER B.Sc. DEGREE EXAMINATION
(CBCSS –UG)
Zoology: Complementary course
ZOL3C03 - PHYSIOLOGY & ETHOLOGY

Time: Two Hours Maximum: 60 Marks

Section A

I. Short answer questions. Each question carries 2 marks.
1. What is circadian rhythm.
2. Write a note on social organization in elephants.
3. Differentiate between hibernation and aestivation.
4. Explain the mechanism of absorption of nutrients.
5. What is BMR? Mention the factors affecting it.
6. Differentiate between arteriosclerosis and atherosclerosis.
7. Write a note on respiratory problems of high altitudes.
8. Explain cardiac cycle.
9. What is summation of stimuli?
10. Differentiate between osmoconformers and osmoregulators.
11. Write a note on hormonal control of kidney function.
12. Explain all or none law.

(Ceiling: 20 marks)

Section B

II. Paragraph questions. Each question carries 5 marks
13. Explain briefly the mechanism of muscle contraction.
14. Write a short account on the structure of the human heart.
15. Describe urea cycle.
16. Explain the neural and chemical control of respiration.
17. Briefly explain the digestion of carbohydrates, proteins and lipids.
18. Describe the fluid mosaic model of plasma membrane.
19. Give an account on communication behavior in animals.

(Ceiling: 30 marks)

Section C

III. Essay questions. Answer any one question.
20. Describe the mechanism of nerve impulse transmission.
21. Explain the different kinds of behavior.

(1x10 = 10 marks)
MODEL QUESTION PAPER
FOURTH SEMESTER B.Sc. DEGREE EXAMINATION
(CBCSS –UG)
Zoology: Complementary course
ZOL4C04 – GENETICS AND IMMUNOLOGY

Time: Two Hours
Maximum: 60 Marks

Section A

I. Short answer questions. Each question carries 2 marks.
1. Write a note on cytokines.
2. What are haptens?
3. Mention the various cells of the immune system.
4. What is adaptive immunity?
5. Write a note on viral origin of cancer.
6. What are cosmids?
7. Comment on pseudogenes.
8. Explain the practical applications of genetic engineering.
9. What are transposons?
10. Explain genic balance theory.
11. Comment on gynandromorphism.
12. Explain polygenic inheritance

(Ceiling: 20 marks)

Section B

II. Paragraph questions. Each question carries 5 marks
13. Explain the Patau’s scheme of classification of human chromosomes.
14. Describe the features of genetic code.
15. Write a note on various gene transfer methods.
16. Write a note on the process of transcription.
17. Describe the structure of immunoglobulin.
18. Explain the characteristics of cancer cells.
19. Write a note on ELISA

(Ceiling: 30 marks)

Section C

III. Essay questions. Answer any one question.
20. Explain the steps in the construction of recombinant DNA.
21. Write an essay on immunodeficiency diseases.

(1x10 = 10 marks)
MODEL QUESTION PAPER
FOURTH SEMESTER B.Sc. ZOOLOGY PROGRAMME (CBCSS-UG) CORE PRACTICAL
EXAMINATION
PRACTICAL I: ANIMAL DIVERSITY [Non chordata and Chordata]
[ZOL4B05 P]: [Practical I* A, I* B, I *C, & I *D]

(Digital versions of the mountings and dissections are to be done as per UGC guide lines if the software is available)

Time: 4 hours
Max: 80 Marks

I. Q. 1-6. Spotters: Do as directed. 6 items
(6 x 3 =18 Marks)
(Non-chordata - 2; Chordata – 2; Histology/Key – 1; Osteology – 1)

II. Q. 7. Minor: Mount one of the following
(9 Marks)
Earthworm: Mount a few setae on a clean slide.
OR
Honey bee/ Plant bug: Mount the mouth parts on a clean slide.

III. Q. 8. Minor: Mount one of the following. Sketch and label
(Mounting-9 + Sketch-3 =12 marks)
Nereis: Mount the parapodium on a clean slide. Sketch and label
OR
Mullet/Sardine: Mount a few cycloid scales on a clean slide. Sketch and label

IV. Q. 9. Major: One of the following. Dissections (18 Marks) & Display (4 Marks).
(22 Marks)
Prawn: Dissect and display the Nervous system.
OR
Shark: Digitally dissect/dissect and display the Heart and ventral aorta with branches on both sides.

Viva voce
(3 marks)

V. Record:
(14+2=16 Marks)
MODEL QUESTION PAPER
SIXTH SEMESTER B.Sc. ZOOLOGY PROGRAMME (CBCSS-UG)
CORE PRACTICAL EXAMINATION

PRACTICAL II: Cell Biology, Genetics, Biotechnology, Microbiology, Immunology, Biochemistry, Molecular Biology, Methodology in Science, Biostatistics and Bioinformatics

[ZOL6B15 P]: [Practical II* A+ II* B]

Time: 4 hours Max: 80 Marks

I. Q. 1-6. Spotters: Do as directed. (6 items) (6 x 3 = 18 Marks)

(Cell Biology & Genetics (2) – polypene chromosome, mitotic/meiotic stages, tissues, Barr body, micrometry, pedigree charts, karyotypes, male or female Drosophila, genetic traits; Biotechnology, Microbiology & Immunology (2) – electrophoretic apparatus, PCR, Southern blotting, milk quality, bacterial motility, blood grouping, section of spleen, thymus or lymph node, ELISA, western blotting; Biochemistry, Molecular Biology, Methodology in Science, Biostatistics & Bioinformatics (2) paper chromatography, colorimeter, electrophoretic apparatus, preparation of solutions of various normality/molarity or serial dilutions, phylogenetic tree, sequence similarity search, multiple sequence alignment).

II. Q. 7. Minor: Any one of the following (9 Marks)

Stain the buccal epithelial cells (striated muscle cells provided) with methylene blue. Submit the slide for valuation. Write down the principle of methylene blue staining of tissues/cells and the staining procedure.

(Slide - 6, Principle - 2, Procedure - 1)

OR

Detect biochemically the presence of reducing disaccharides/monosaccharides in the given sample. Conduct appropriate confirmatory tests also. Report the results in tabular form.

(Expt. - 6, Report of the results in tabular form - 3)

OR

Retrieve sequence of the beta-lactamase OXA gene for the organism Escherichia coli and Pseudomonas taiwanensis from NCBI in fasta format. Generate pairwise alignment for the sequences using BLAST. Analyze the result and note down the e-value and percentage identity. Write down the procedure.

(Procedure - 5, Sequence retrieval - 2, e-value - 1, % identity - 1)

OR

Identify the group of your own blood. Write down the principle and procedure.

(Experiment and result - 5, Principle and procedure - 4)

OR

Demonstrate the effect of colchicine on cell division using Allium cepa. Write the principle and procedure.

(Experiment and result – 5, Principle and Procedure - 4)

III. Q. 8. Minor: Any one of the following. (3+9=12 Marks)

a) Genetics Problem-(Monohybrid, dihybrid crosses; blood groups; sex-linked inheritance) (3 marks)

b) Measure the length of the leaves provided. Using the data plot a Frequency Polygon with mean ± SD and submit it for evaluation. (9 marks)

(Measurement and Preparation of the data in table- 6, Graphical representation - 3)

OR

a) Genetics Problem (3 marks)
b) Stain the mitochondria in human cheek epithelial cells (insect flight muscle/yeast) using Janus green B. Observe and submit the preparation for evaluation. Write the principle and procedure. (9 marks)

(Preparation – 5, Principle and procedure 2, Sketch and label - 2)

OR

a) Genetics Problem (3 marks)
b) Prepare a smear of the fungal sample provided to you. Write down the principle and procedure (9 marks)

(Preparation 6, Principle and procedure- 3)

OR

a) Genetics Problem (3 marks)
b) Find out the homologous sequences in Enterobacteriaceae, Escherichia albertii, Cronobacter sakazaki, Shigella sonnei and Shigella flexneri by performing BLASTp for the sequence given below and save the file as protein.fasta and execute their MSA using clustal omega and study the percentage similarity of each pair of sequences. Based on these scores identify which sequences are the most similar to each other. Also save the alignment file in fasta format.

>seq
MACKGTGNRTIAVYDLGGGTDISIIIEIDEVDJEKTFEVLATNGDTHL
GGEDFDSRLINLYVEEEFKKDQG
IDLRLNDPLAMQRLKEAAEKAIELSQAQQTDVNLPIYATADGPKHMN
IKVTRAKLESLVEDIVNRSEIP
LKVAQDAGLSVSDIVLGGQTRMPMVQKVAEFFGKEPRKDVPN
DEAVAIGAATQGGGVLTKCL (The sequence must be provided on the desktop)

(9 marks)

(Procedure 3, MSA 3, % similarity 2, Identification 1)

IV. Q. 10. Major: Any one of the following. (22 Marks)

Prepare a smear of your buccal epithelium to demonstrate Barr body. Write the principle and procedure. Comment on your results.

(Experiment and result – 18, Principle & Procedure – 2, Comment 2) OR

By performing appropriate biochemical tests analyze the given three sample solutions for the presence of organic constituents, such as monosaccharides, polysaccharides, proteins and lipids. Submit the report in tabular form.

(Expt. and result - 18, Report of the results in tabular form - 4) OR

Prepare a neatly stained squash preparation of onion root tip. Identify any two mitotic stages. Sketch and label.

(Expt. and result- 18, Identification - 2, Sketch - 2) OR

Prepare a squash preparation of onion root tip. Calculate the mitotic/metaphase index. Write the procedure.

(Expt. and result – 18, Calculation – 4) OR

Find out the diameter/length of the given object using stage and ocular micrometer. Write down the principle and procedure.

(Expt. and result – 15, Calculation. 4, Principle and procedure – 3) OR

Identify whether the given bacteria is Gram positive or negative by the Gram staining technique. Write the principle and procedure.

(Expt. and result – 18, Principle and procedure – 4)

Viva-voce (3 marks)

Record: (16 Marks)
PRACTICAL III: Physiology, Endocrinology, Reproductive and Developmental Biology, Environmental and Conservation Biology, Ethology, Evolution, Zoogeography and Elective course.

[ZOL6B16P] [Practical: III*A+ III*B]

Time: 4 hours Max: 80 Marks

I. Q. 1-6. Spotters: Do as directed. 6 items. (6 x 3 =18 Marks)

(Physiology & Endocrinology (Any 1) – Haemoglobinometer, sphygmomanometer, osmotic response of RBC, blood cells, sections of pituitary, thyroid, adrenal or endocrine pancreas, pregnancy detection; Reproductive and Developmental Biology (Any 2) - embryo/developmental stages/larval forms, placenta, Drosophila life cycle; Ethology (Any 1) phototaxis, chemotaxis, locomotory behaviour; Evolution (Any 2) - homologous/analogous organs, vestigial organs, adaptive radiation, connecting links, evolution of man.

II. Q. 7. Minor: One or two items from elective course. (9 Marks)
(Human Genetics/Aquaculture, Animal Husbandry and Poultry science/ Applied Entomology)

III. Q. 8. Minor: Any one of the following. (3+9=12 Marks)

a. Mark the Australian realm in the map supplied and comment on its faunal characteristics. (3 marks)

b. Determine the haemoglobin content of human blood. Write the procedure (9 marks)

(Expt. and result – 7; Procedure – 2)

OR

a. Mark the Galapagos islands in the map supplied and comment on its faunal characteristics. (3 marks)

b. Determine the pH of the two samples provided by using pH indicator paper/pH meter. Write the procedure. Comment on its significance. (9 marks)

(Expt. and result – 5, Procedure - 3, Comment - 1)

OR

a. Comment on the faunal characteristics of the marked region in the world map provided to you (3 marks)

b. Detect the presence of starch and urea in the given sample of milk. Write down the procedure. (9 marks)

(Expt. & Result - 6, Procedure – 3)

OR

a. Comment on the special features of the marked region in the world map provided to you. (3 marks)

b. Construct a food web with specimens/names of items provided. Define and add a note on its ecological significance. (Mouse, Snake, Rabbit, Grasshopper, Grass, Lizard, Hawk Grasshopper) (9 marks)

(Food web - 6, Definition - 1, significance - 2)

OR

a. Mark the distribution of lung fishes in the world map provided. (3 marks)

b. Mount any two marine planktons in glycerin on clean slides. Identify them up to class and write notes on planktonic adaptations. (9 marks)

(Mountings - 2+2, Identification - 2, Adaptations - 3)
IV. Q. 9. Major: Any one of the following. (22 Marks)
You are provided with three urine samples. Analyze them for the presence of glucose, albumin and ketone bodies. Present your results in tabular form. Comment on your results.

(Experiment results - 18, report of the results in tabular form – 2, Comment - 2)

OR

Prepare a smear of your own blood. Identify any two WBCs. Sketch and label.

(Expt. and result - 18, Identification - 2, Sketch - 2)

OR

Estimate the amount of dissolved oxygen in the given sample using Winkler’s method. Write down the principle and procedure.

(Expt. and result-16, Principle and procedure - 4, Calculation - 2)

OR

Estimate the amount of dissolved Carbon dioxide in the given sample. Write down the principle and procedure.

(Expt. and result-16, Principle and procedure - 4, Calculation - 2)

OR

Estimate the hardness of the given water sample. Write down the principle and procedure.

(Expt. and result -16, Principle and procedure - 4, Calculation - 2)

Viva-voce (3 marks)

V. Record: (16 Marks)
MODEL QUESTION PAPER
FOURTH SEMESTER B.Sc. ZOOLOGY (CBCSS-UG) COMPLEMENTARY PRACTICAL EXAMINATION

PRACTICAL: Animal diversity, wildlife conservation, Economic zoology, Physiology, Ethology, Genetics and Immunology

[ZOL4C05P]: [Practical I*A, I*B, I*C & I*D]

(Digital versions of the mountings and dissections are to be done as per UGC guide lines if the software is available)

Time: 4 hours Max. : 80 Marks

I. Q. 1-6. Spotters: Do as directed. (6 items): 18 Marks

(Non chordata -1; Chordata - 2; Histology/Osteology -1; Economic Zoology-1; Genetics - 1)

(6 x 3 = 18 Marks)

II. Q.7. Minor: Any one item from the following: (9 Marks)

Identify your own blood group and submit the slide for valuation. Write down the principle and procedure involved.

(Expt. and result - 6, principle and procedure – 3)

OR

Detect biochemically the presence of glucose, protein or lipid in the sample provided Conduct an appropriate confirmatory test also. Submit the result in tabular form.

(Expt. and result - 6, Report of the results in tabular form – 3)

III. Q.8. Minor: Any one item from the following: (12 Marks)

Honey bee: Mount the mouth parts on a clean slide. Sketch and label.

(10 + 2 = 12)

OR

Shark: Mount a few placoid scales on a clean slide. Sketch and label.

(10 + 2 = 12)

IV. Q.9. Major: One of the following: (22 Marks)

Penaeus: Dissect and display the nervous system.

(18+4 =22)

OR

Make a neatly stained smear of your own blood. Identify any two immunologically significant cells.

(Preparation - 18, Identification – 2, Sketch and label – 2)

Viva – voce (3 marks)

V. Record: (16 Marks)